Use the standard plane equation Ax + By + Cz + D = 0
, and write the equation as a matrix multiplication. P
is your unknown 4x1 [A;B;C;D]
g = [x y z 1]; % represent a point as an augmented row vector
g*P = 0; % this point is on the plane
Now expand this to all your actual points, an Nx4 matrix G
. The result is no longer exactly 0, it's the error you're trying to minimize.
G*P = E; % E is a Nx1 vector
So what you want is the closest vector to the null-space of G, which can be found from the SVD. Let's test:
% Generate some test data
A = 2;
B = 3;
C = 2.5;
D = -1;
G = 10*rand(100, 2); % x and y test points
% compute z from plane, add noise (zero-mean!)
G(:,3) = -(A*G(:,1) + B*G(:,2) + D) / C + 0.1*randn(100,1);
G(:,4) = ones(100,1); % augment your matrix
[u s v] = svd(G, 0);
P = v(:,4); % Last column is your plane equation
OK, remember that P can vary by a scalar. So just to show that we match:
scalar = 2*P./P(1);
P./scalar
ans =
2.0000
3.0038
2.5037
-0.9997
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…