Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
114 views
in Technique[技术] by (71.8m points)

python - Why is my margin of error graph so spikey tensorflow

So whenever I run my TensorFlow model the margin of error (loss / val_loss) graph is extremely back and fourth and I was wondering how I could stop this /reduce it here is a picture Graph

here's the code if anyone wants to run it should work fine as long as you have the pips

import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
import matplotlib.pyplot as plt
import datetime
import tensorboard

from keras.models import Sequential
from keras.layers import Dense

train_df = pd.read_csv('https://www.dropbox.com/s/ednsabkdzs8motw/ROK%20INPUT%20DATA%20-%20Sheet1.csv?dl=1')
eval_df = pd.read_csv('https://www.dropbox.com/s/irnqwc1v67wmbfk/ROK%20EVAL%20DATA%20-%20Sheet1.csv?dl=1')


train_df['Troops'] = train_df['Troops'].astype(float)
train_df['Enemy Troops'] = train_df['Enemy Troops'].astype(float)
train_df['Damage'] = train_df['Damage'].astype(float)
eval_df['Troops'] = eval_df['Troops'].astype(float)
eval_df['Enemy Troops'] = eval_df['Enemy Troops'].astype(float)
eval_df['Damage'] = eval_df['Damage'].astype(float)


damage = train_df.pop('Damage')
dataset = tf.data.Dataset.from_tensor_slices((train_df.values, damage.values))

test_labels = eval_df.pop('Damage')
test_features = eval_df.copy()


model = keras.Sequential(
    [
        tf.keras.layers.InputLayer(input_shape = (8,)),
        tf.keras.layers.Dense(8, activation='relu'),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(1),
    ]
)


model.compile(optimizer='adam', loss='mean_squared_error')
model.summary()



history = model.fit(train_df, damage, validation_split=0.2, epochs=5000)

def plot_loss(history):
  plt.plot(history.history['loss'], label='loss')
  plt.plot(history.history['val_loss'], label='val_loss')
  plt.ylim([0, 2000])
  plt.xlabel('Epoch')
  plt.ylabel('Error [MPG]')
  plt.legend()
  plt.grid(True)
plot_loss(history)
plt.show()


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)
等待大神答复

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

1.4m articles

1.4m replys

5 comments

57.0k users

...