I am not aware of an out-of-the-box pandas function for that (but I am hoping to be proven wrong). Imho, you have to calculate the percentage per group by calculating the total_sum
, then determining the percentage per group aggregation. Stand-alone code:
import pandas as pd
from matplotlib import pyplot as plt
#fake data generation
import numpy as np
np.random.seed(123)
n = 200
start = pd.to_datetime("2017-07-17")
end = pd.to_datetime("2018-04-03")
ndays = (end - start).days + 1
date_range = pd.to_timedelta(np.random.rand(n) * ndays, unit="D") + start
df = pd.DataFrame({"ind": date_range,
"bill_amount": np.random.randint(10, 30, n),
"cat": np.random.choice(["X", "Y", "Z"], n)})
df.set_index("ind", inplace=True)
#df.sort_index(inplace=True)
#this assumes that your dataframe has a datetime index
#here starts the actual calculation
total_sum = df.bill_amount.sum()
dataframe_slice = df.groupby(pd.Grouper(freq='1M')).bill_amount.sum().div(total_sum)*100
dataframe_slice.plot()
#and we beautify the plot
plt.xlabel("Month of expenditure")
plt.ylabel("Percentage of expenditure")
plt.tight_layout()
plt.show()
Sample output:
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…