Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
704 views
in Technique[技术] by (71.8m points)

python - Very slow interpolation using `scipy.interpolate.griddata`

I am experiencing excruciatingly slow performance of scipy.interpolate.griddata when trying to interpolate "almost" regularly gridded data to map coordinates so that both map and data can be plotted with matplotlib.pyplot.imshow because matplotlib.pyplot.pcolormesh is taking too long and does not behave well with alpha among other things.

Best show an example (input files can be downloaded here):

import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import griddata

map_extent = (34.4, 36.2, 30.6, 33.4)
# data corners:
lon = np.array([[34.5,        34.83806236],
                [35.74547079, 36.1173923]])
lat = np.array([[30.8,        33.29936152],
                [30.67890411, 33.17826563]])

# load saved files
topo = np.load('topo.npy')
lons = np.load('lons.npy')
lats = np.load('lats.npy')
data = np.load('data.npy')

# get max res of data
dlon = abs(np.array(np.gradient(lons))).max()
dlat = abs(np.array(np.gradient(lats))).max()

# interpolate the data to the extent of the map
loni,lati = np.meshgrid(np.arange(map_extent[0], map_extent[1]+dlon, dlon),
                        np.arange(map_extent[2], map_extent[3]+dlat, dlat))
zi = griddata((lons.flatten(),lats.flatten()),
              data.flatten(), (loni,lati), method='linear')

Plotting:

fig, (ax1,ax2) = plt.subplots(1,2)
ax1.axis(map_extent)
ax1.imshow(topo,extent=extent,cmap='Greys')

ax2.axis(map_extent)
ax2.imshow(topo,extent=extent,cmap='Greys')

ax1.imshow(zi, vmax=0.1, extent=extent, alpha=0.5, origin='lower')
ax1.plot(lon[0],lat[0], '--k', lw=3, zorder=10)
ax1.plot(lon[-1],lat[-1], '--k', lw=3, zorder=10)
ax1.plot(lon.T[0],lat.T[0], '--k', lw=3, zorder=10)
ax1.plot(lon.T[-1],lat.T[-1], '--k', lw=3, zorder=10)


ax2.pcolormesh(lons,lats,data, alpha=0.5)
ax2.plot(lon[0],lat[0], '--k', lw=3, zorder=10)
ax2.plot(lon[-1],lat[-1], '--k', lw=3, zorder=10)
ax2.plot(lon.T[0],lat.T[0], '--k', lw=3, zorder=10)
ax2.plot(lon.T[-1],lat.T[-1], '--k', lw=3, zorder=10)

Result:

enter image description here

Note, this can not be done by simply rotating the data with affine transformations.

The griddata call takes over 80 seconds per call with my real data and pcolormesh takes even longer (over 2 minutes!). I have looked at both Jaimi's answer here and Joe Kington's answer here but I cant figure out a way to get it to work for me.

All my datasets have exactly the same lons, lats so basically I need to map those once to the map's coordinates and apply the same transformation to the data itself. Question is how do I do that?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

After a long time of putting up with excruciatingly slow performance of scipy.interpolate.griddata I've decided to ditch griddata in favor of image transformation with OpenCV. Specifically, Perspective Transformation.

So for the above example, the one in the question above, for which you can get the input files here, this is a piece of code which takes 1.1 ms as opposed to the 692 ms which takes the regridding part in the example above.

import cv2
new_data = data.T[::-1]

# calculate the pixel coordinates of the
# computational domain corners in the data array
w,e,s,n = map_extent
dx = float(e-w)/new_data.shape[1]
dy = float(n-s)/new_data.shape[0]
x = (lon.ravel()-w)/dx
y = (n-lat.ravel())/dy

computational_domain_corners = np.float32(zip(x,y))

data_array_corners = np.float32([[0,new_data.shape[0]],
                                 [0,0],
                                 [new_data.shape[1],new_data.shape[0]],
                                 [new_data.shape[1],0]])

# Compute the transformation matrix which places
# the corners of the data array at the corners of
# the computational domain in data array pixel coordinates
tranformation_matrix = cv2.getPerspectiveTransform(data_array_corners,
                                                   computational_domain_corners)

# Make the transformation making the final array the same shape
# as the data array, cubic interpolate the data placing NaN's
# outside the new array geometry
mapped_data = cv2.warpPerspective(new_data,tranformation_matrix,
                                  (new_data.shape[1],new_data.shape[0]),
                                  flags=2,
                                  borderMode=0,
                                  borderValue=np.nan)

The only drawback I see to this solution is a slight offset in the data as illustrated by the non-overlapping contours in the attached image. regridded data contours (probably more accurate) in black and warpPerspective data contours in 'jet' colorscale.

At the moment, I live just fine with the discrepancy at the advantage of performance and I hope this solution helps others as-well.

Someone (not me...) should find a way to improve the performance of griddata :) Enjoy!

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...