Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
510 views
in Technique[技术] by (71.8m points)

bit manipulation - In Java, when using bitshifts, why does 1 << 32 != 1 << 31 << 1?

int a = 1 << 32;
int b = 1 << 31 << 1;

Why does a == 1? b is 0 as I expected.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

All shifts are done mod 32 for ints and mod 64 for longs.

From section 15.19 of the spec:

If the promoted type of the left-hand operand is int, only the five lowest-order bits of the right-hand operand are used as the shift distance. It is as if the right-hand operand were subjected to a bitwise logical AND operator & (§15.22.1) with the mask value 0x1f. The shift distance actually used is therefore always in the range 0 to 31, inclusive.

If the promoted type of the left-hand operand is long, then only the six lowest-order bits of the right-hand operand are used as the shift distance. It is as if the right-hand operand were subjected to a bitwise logical AND operator & (§15.22.1) with the mask value 0x3f. The shift distance actually used is therefore always in the range 0 to 63, inclusive.

As for why the language was designed that way - I don't know, but C# has the same design decision. Here's what the annotated ECMA C# spec says:

C# deliberately keeps implementation-defined behaviors to a miinimum. They are accepted only when the performance impact of forcing uniform behavior would be excessive (such as for some floating-point precision issues). Hence, the size of each integral type is precisely specified, and the character set is fixed to Unicode.

For shift operations, too, uniform behavior is specified. It can be achieved using a single extra instruction (& 0x1F or & 0x3F) that incurs only a tiny cost on modern processors, especially since it does not reference memory. Unlike for floating-point operations, the difference in shift behavior would be dramatic if left to the whim of the processors; rather than a small difference in precision, completely different integral results would be produced.

In making this decision the committe studied reference materials for a number of different processor architectures. There is little consistency in the behavior for shift counts outside the range -32..+32 for 32-bit operands, and respectively -64..+64 for 64-bit operands.

(There's then a list of some examples.)

This seems an entirely reasonable explanation to me. Consistency is definitely important, and if it would be impossible to implement different consistent behaviour in a performant way on some systems, I think this is a reasonable solution.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...