Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
237 views
in Technique[技术] by (71.8m points)

poker - Algorithm to find streets and same kind in a hand

This is actually a Mahjong-based question, but a Romme- or even Poker-based background will also easily suffice to understand.

In Mahjong 14 tiles (tiles are like cards in Poker) are arranged to 4 sets and a pair. A street ("123") always uses exactly 3 tiles, not more and not less. A set of the same kind ("111") consists of exactly 3 tiles, too. This leads to a sum of 3 * 4 + 2 = 14 tiles.

There are various exceptions like Kan or Thirteen Orphans that are not relevant here. Colors and value ranges (1-9) are also not important for the algorithm.

I'm trying to determine if a hand can be arranged in the way described above. For certain reasons it should not only be able to deal with 14 but any number of tiles. (The next step would be to find how many tiles need to be exchanged to be able to complete a hand.)

Examples:

11122233344455 - easy enough, 4 sets and a pair.
12345555678999 - 123, 456, 789, 555, 99
11223378888999 - 123, 123, 789, 888, 99
11223344556789 - not a valid hand

My current and not yet implemented idea is this: For each tile, try to make a) a street b) a set c) a pair. If none works (or there would be > 1 pair), go back to the previous iteration and try the next option, or, if this is the highest level, fail. Else, remove the used tiles from the list of remaining tiles and continue with the next iteration.

I believe this approach works and would also be reasonably fast (performance is a "nice bonus"), but I'm interested in your opinion on this. Can you think of alternate solutions? Does this or something similar already exist?

(Not homework, I'm learning to play Mahjong.)

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The sum of the values in a street and in a set can be divided by 3:

  • n + n + n = 3n
  • (n-1) + n + (n + 1) = 3n

So, if you add together all the numbers in a solved hand, you would get a number of the form 3N + 2M where M is the value of the tile in the pair. The remainder of the division by three (total % 3) is, for each value of M :

total % 3 = 0  -> M = {3,6,9}
total % 3 = 1  -> M = {2,5,8}
total % 3 = 2  -> M = {1,4,7}

So, instead of having to test nine possible pairs, you only have to try three based on a simple addition. For each possible pair, remove two tiles with that value and move on to the next step of the algorithm to determine if it's possible.

Once you have this, start with the lowest value. If there are less than three tiles with that value, it means they're necessarily the first element of a street, so remove that street (if you can't because tiles n+1 or n+2 are missing, it means the hand is not valid) and move on to the next lowest value.

If there are at least three tiles with the lowest value, remove them as a set (if you ask "what if they were part of a street?" consider that if they were, then there are also three of tile n+1 and three of tile n+2, which can also be turned into sets) and continue.

If you reach an empty hand, the hand is valid.

For example, for your invalid hand the total is 60, which means M = {3,6,9}:

Remove the 3: 112244556789
 - Start with 1: there are less than three, so remove a street
   -> impossible: 123 needs a 3

Remove the 6: impossible, there is only one

Remove the 9: impossible, there is only one

With your second example 12345555678999, the total is 78, which means M = {3,6,9}:

Remove the 3: impossible, there is only one

Remove the 6: impossible, there is only one

Remove the 9: 123455556789
 - Start with 1: there is only one, so remove a street
   -> 455556789
 - Start with 4: there is only one, so remove a street
   -> 555789
 - Start with 5: there are three, so remove a set
   -> 789
 - Start with 7: there is only one, so remove a street
   -> empty : hand is valid, removals were [99] [123] [456] [555] [789]

Your third example 11223378888999 also has a total of 78, which causes backtracking:

Remove the 3: 11227888899
 - Start with 1: there are less than three, so remove a street
   -> impossible: 123 needs a 3

Remove the 6: impossible, there are none

Remove the 9: 112233788889
 - Start with 1: there are less than three, so remove streets
   -> 788889
 - Start with 7: there is only one, so remove a street
   -> 888
 - Start with 8: there are three, so remove a set
   -> empty, hand is valid, removals were : [99] [123] [123] [789] [888]

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...