Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
473 views
in Technique[技术] by (71.8m points)

r - How do I time out a lapply when a list item fails or takes too long?

For several efforts I'm involved in at the moment, I am running large datasets with numerous parameter combinations through a series of functions. The functions have a wrapper (so I can mclapply) for ease of operation on a cluster. However, I run into two major challenges.

a) My parameter combinations are large (think 20k to 100k). Sometimes particular combinations will fail (e.g. survival is too high and mortality is too low so the model never converges as a hypothetical scenario). It's difficult for me to suss out ahead of time exactly which combinations will fail (life would be easier if I could do that). But for now I have this type of setup:

failsafe <- failwith(NULL, my_wrapper_function)
# This is what I run
# Note that input_variables contains a list of variables in each list item
results <-  mclapply(input_variables, failsafe, mc.cores = 72)
# On my local dual core mac, I can't do this so the equivalent would be:
results <-  llply(input_variables, failsafe,  .progress = 'text')

The skeleton for my wrapper function looks like this:

my_wrapper_function <- function(tlist) {
    run <- tryCatch(my_model(tlist$a, tlist$b, tlist$sA, tlist$Fec, m = NULL) , error=function(e) NULL)
...
return(run)
}

Is this the most efficient approach? If for some reason a particular combination of variables crashes the model, I need it to return a NULL and carry on with the rest. However, I still have issues that this fails less than gracefully.

b) Sometimes a certain combination of inputs does not crash the model but takes too long to converge. I set a limit on the computation time on my cluster (say 6 hours) so I don't waste my resources on something that is stuck. How can I include a timeout such that if a function call takes more than x time on a single list item, it should move on? Calculating the time spent is trivial but a function mid simulation can't be interrupted to check the time, right?

Any ideas, solutions or tricks are appreciated!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You may well be able to manage graceful-exits-upon-timout using a combination of tryCatch() and evalWithTimeout() from the R.utils package. See also this post, which presents similar code and unpacks it in a bit more detail.

require(R.utils)

myFun <- function(x) {Sys.sleep(x); x^2}

## evalWithTimeout() times out evaluation after 3.1 seconds, and then
## tryCatch() handles the resulting error (of class "TimeoutException") with 
## grace and aplomb.
myWrapperFunction <- function(i) {
    tryCatch(expr = evalWithTimeout(myFun(i), timeout = 3.1), 
             TimeoutException = function(ex) "TimedOut")
}

sapply(1:5, myWrapperFunction)
# [1] "1"        "4"        "9"        "TimedOut" "TimedOut"

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...