Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
977 views
in Technique[技术] by (71.8m points)

apache spark - Not serialazable exception while running Linear regression scala 2.12

While running the following spark mllib on local mode with scala 2.12.3 , encountered the following error lambda not serialazable

Any inputs would be much appreciated ? (Moving onto scala 2.11 is not an option for me) Can you please let me know what can i do to avoid this issue? Thankyou

import java.io.FileWriter

import org.apache.spark.SparkConf
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.evaluation.RegressionEvaluator
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.DoubleType
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.TimestampType

import java.util.concurrent.atomic.AtomicBoolean


object MLAnalyzer {

  val conf = new SparkConf().setMaster("local[2]").set("deploy-mode", "client").set("spark.driver.bindAddress", "127.0.0.1")
        .set("spark.broadcast.compress", "false")
        .setAppName("local-spark-kafka-consumer-client")

      val spark = SparkSession
        .builder()
        .config(conf)
        .getOrCreate()
  def main(args: Array[String]): Unit = {
    process
  }


  def process():Unit= {


      // training data
      val filePath = "/home/vagrant/Desktop/Workspaces/SparkMachineLearning/sparkML/src/main/resources/train_pooling.csv"
      val modelPath = "file:///home/vagrant/Downloads/medium-articles-master/titanic_spark/training_batch/src/main/resources/poolSessionModelRecent.model"

      val schema = StructType(
        Array(
          StructField("PACKAGE_KEY", StringType),
          StructField("MOST_IDLE", IntegerType),
          StructField("MAX_WAIT", IntegerType),
          StructField("IDLE_COUNT", IntegerType),
          StructField("APPLICATION", StringType),
          StructField("LONGEST_WAIT", IntegerType),
          StructField("TIMEOUTS", IntegerType),
          StructField("LAST_ACCESS", TimestampType),
          StructField("MOST_ACTIVE", IntegerType),
          StructField("MAX_ACTIVE", IntegerType),
          StructField("MAX_IDLE", IntegerType),
          StructField("ACTIVE_COUNT", IntegerType),
          StructField("FACTOR_LOAD", DoubleType)))

          while (true) {
            Thread.sleep(100)
      // read the raw data
      var df_raw = spark
        .read
        .option("header", "true")
        //      .option("inferSchema","true")
        .schema(schema)
        .csv(filePath)

      df_raw = df_raw.drop(df_raw.col("PACKAGE_KEY"))
      df_raw = df_raw.drop(df_raw.col("MOST_IDLE"))
      df_raw = df_raw.drop(df_raw.col("MAX_IDLE"))
      df_raw = df_raw.drop(df_raw.col("MOST_ACTIVE"))
      df_raw = df_raw.drop(df_raw.col("LAST_ACCESS"))
      df_raw = df_raw.drop(df_raw.col("APPLICATION"))
      df_raw = df_raw.drop(df_raw.col("MAX_WAIT"))


      // fill all na values with 0
      val df = df_raw.na.fill(0)
      val packageKeyIndexer = new StringIndexer()
        .setInputCol("PACKAGE_KEY")
        .setOutputCol("PackageIndex")
        .setHandleInvalid("keep")

      // create the feature vector
      val vectorAssembler = new VectorAssembler()
        .setInputCols(Array("IDLE_COUNT", "TIMEOUTS", "ACTIVE_COUNT" /*, "TOTAL_REQUEST_COUNT"*/ ))
        .setOutputCol("features_intermediate")


      import org.apache.spark.ml.feature.StandardScaler
      val scaler = new StandardScaler().setWithMean(true).setWithStd(true).setInputCol("features_intermediate").setOutputCol("features")

      var pipeline: Pipeline = null
      //    if (lr1 == null) {
      val lr =
        new LinearRegression()
          .setMaxIter(100)
          .setRegParam(0.1)
          .setElasticNetParam(0.8)
          //.setFeaturesCol("features")   // setting features column
          .setLabelCol("FACTOR_LOAD") // setting label column
      // create the pipeline with the steps
      pipeline = new Pipeline().setStages(Array( /*genderIndexer, cabinIndexer, embarkedIndexer,*/ vectorAssembler, scaler, lr))


      // create the model following the pipeline steps
      val cvModel = pipeline.fit(df)

      // save the model
      cvModel.write.overwrite.save(modelPath)

      var testschema = StructType(
        Array(
          //        StructField("PACKAGE_KEY", StringType),
          StructField("IDLE_COUNT", IntegerType),
          StructField("TIMEOUTS", IntegerType),
          StructField("ACTIVE_COUNT", IntegerType)))

      val df_raw1 = spark
        .read
        //      .option("header", "true")
        .schema(testschema)
        .csv("/home/vagrant/Desktop/Workspaces/SparkMachineLearning/sparkML/src/main/resources/test_pooling.csv")

      // fill all na values with 0
      val df1 = df_raw1.na.fill(0)

      val evaluator = new RegressionEvaluator().setMetricName("rmse").setLabelCol("prediction")
      var rmse = evaluator.evaluate(cvModel.transform(df1))
      import org.apache.spark.sql.functions._
      import spark.implicits._
      val extracted = cvModel.transform(df1)

      val prediction = extracted.select("prediction").map(r => r(0).asInstanceOf[Double]).collect()
      if (prediction != null && prediction.length > 0) {
        val avg = prediction.sum / prediction.length
        val pw: FileWriter = new FileWriter("/home/vagrant/Desktop/Workspaces/SparkMachineLearning/sparkML/src/main/resources/result.csv");
        pw.append(avg.toString)
        pw.flush()
        pw.close()
        println("completed modelling process")
      } else {
        //do nothing
      }

          }


  }
}

gives me following error

Caused by: java.io.NotSerializableException: scala.runtime.LazyRef
Serialization stack:
    - object not serializable (class: scala.runtime.LazyRef, value: LazyRef thunk)
    - element of array (index: 2)
    - array (class [Ljava.lang.Object;, size 3)
    - field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)
    - object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class org.apache.spark.sql.catalyst.expressions.ScalaUDF, functionalInterfaceMethod=scala/Function1.apply:(Ljava/lang/Object;)Ljava/lang/Object;, implementation=invokeStatic org/apache/spark/sql/catalyst/expressions/ScalaUDF.$anonfun$f$2:(Lscala/Function1;Lorg/apache/spark/sql/catalyst/expressions/Expression;Lscala/runtime/LazyRef;Lorg/apache/spark/sql/catalyst/InternalRow;)Ljava/lang/Object;, instantiatedMethodType=(Lorg/apache/spark/sql/catalyst/InternalRow;)Ljava/lang/Object;, numCaptured=3])
    - writeReplace data (class: java.lang.invoke.SerializedLambda)
    - object (class org.apache.spark.sql.catalyst.expressions.ScalaUDF$$Lambda$2280/878458383, org.apache.spark.sql.catalyst.expressions.ScalaUDF$$Lambda$2280/878458383@65af23c0)
    - field (class: org.apache.spark.sql.catalyst.expressions.ScalaUDF, name: f, type: interface scala.Function1)
    - object (class org.apache.spark.sql.catalyst.expressions.ScalaUDF, UDF(named_struct(IDLE_COUNT_double_vecAssembler_bc4ee3d99e56, cast(coalesce(IDLE_COUNT#1732, 0) as double), TIMEOUTS_double_vecAssembler_bc4ee3d99e56, cast(coalesce(TIMEOUTS#1735, 0) as double), ACTIVE_COUNT_double_vecAssembler_bc4ee3d99e56, cast(coalesce(ACTIVE_COUNT#1740, 0) as double))))
    - field (class: org.apache.spark.sql.catalyst.expressions.Alias, name: child, type: class org.apache.spark.sql.catalyst.expressions.Expression)
    - object (class org.apache.spark.sql.catalyst.expressions.Alias, UDF(named_struct(IDLE_COUNT_double_vecAssembler_bc4ee3d99e56, cast(coalesce(IDLE_COUNT#1732, 0) as double), TIMEOUTS_double_vecAssembler_bc4ee3d99e56, cast(coalesce(TIMEOUTS#1735, 0) as double), ACTIVE_COUNT_double_vecAssembler_bc4ee3d99e56, cast(coalesce(ACTIVE_COUNT#1740, 0) as double))) AS features_intermediate#1839)
    - element of array (index: 0)
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Upgrading to Scala 2.12.8 solved the issue. Not sure about the rootcause though.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...