Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
433 views
in Technique[技术] by (71.8m points)

python - Handling multiple datetime formats with pd.to_datetime

I have a datatime data, their format is like 29062017 and 01AUG2017. As you can see, the month is in the middle of data.

I want to convert this data to datetime, when I use pd.to_datetime, but it doesn't work.

Do you know a good way to solve this problem?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can use pd.to_datetime's format arg:

In [11]: s = pd.Series(["29062017", "01AUG2017"])

In [12]: pd.to_datetime(s, format="%d%m%Y", errors="coerce")
Out[12]:
0   2017-06-29
1          NaT
dtype: datetime64[ns]

In [13]: pd.to_datetime(s, format="%d%b%Y", errors="coerce")
Out[13]:
0          NaT
1   2017-08-01
dtype: datetime64[ns]

Note: the coerce argument means that failures will be NaT.

and fill in the NaNs from one into the other e.g. using fillna:

In [14]: pd.to_datetime(s, format="%d%m%Y", errors="coerce").fillna(pd.to_datetime(s, format="%d%b%Y", errors="coerce"))
Out[14]:
0   2017-06-29
1   2017-08-01
dtype: datetime64[ns]

Any strings that don't match either format will remain NaT.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...