Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
728 views
in Technique[技术] by (71.8m points)

numpy - Cython function taking more time than pure python

I am trying to accelerate my code and this part of it is giving me problems,

I tried to use Cython and then followed the advise given here but my pure python function performs better than both the cython and cython_optimized ones

The cython code is the following:

import numpy as np
cimport numpy as np

DTYPE = np.float
ctypedef np.float_t DTYPE_t

cimport cython
@cython.boundscheck(False)
@cython.wraparound(False) 

def compute_cython(u, PorosityProfile, DensityIceProfile, DensityDustProfile, DensityProfile):

    DustJ, DustF, DustG, DustH, DustI = 250.0, 633.0, 2.513, -2.2e-3, -2.8e-6   
    IceI, IceC, IceD, IceE, IceF, IceG, IceH =  273.16, 1.843e5, 1.6357e8, 3.5519e9, 1.6670e2,  6.4650e4, 1.6935e6

    delta = u-DustJ
    result_dust = DustF+DustG*delta+DustH*delta**2+DustI*(delta**3);

    x= u/IceI;
    result_ice = (x**3)*(IceC+IceD*(x**2)+IceE*(x**6))/(1+IceF*(x**2)+IceG*(x**4)+IceH*(x**8))

    return (DensityIceProfile*result_ice+DensityDustProfile*result_dust)/DensityProfile


def compute_cythonOptimized(np.ndarray[DTYPE_t, ndim=1] u, np.ndarray[DTYPE_t, ndim=1] PorosityProfile, np.ndarray[DTYPE_t, ndim=1] DensityIceProfile, np.ndarray[DTYPE_t, ndim=1] DensityDustProfile, np.ndarray DensityProfile):

    assert u.dtype == DTYPE
    assert PorosityProfile.dtype == DTYPE
    assert DensityIceProfile.dtype == DTYPE
    assert DensityDustProfile.dtype == DTYPE
    assert DensityProfile.dtype == DTYPE

    cdef float DustJ = 250.0
    cdef float DustF = 633.0  
    cdef float DustG = 2.513 
    cdef float DustH = -2.2e-3   
    cdef float DustI = -2.8e-6 
    cdef float IceI =  273.16
    cdef float IceC =  1.843e5 
    cdef float IceD =  1.6357e8 
    cdef float IceE =  3.5519e9 
    cdef float IceF =  1.6670e2 
    cdef float IceG =  6.4650e4
    cdef float IceH =  1.6935e6

    cdef np.ndarray[DTYPE_t, ndim=1] delta = u-DustJ
    cdef np.ndarray[DTYPE_t, ndim=1] result_dust = DustF+DustG*delta+DustH*delta**2+DustI*(delta**3);

    cdef np.ndarray[DTYPE_t, ndim=1] x= u/IceI;
    cdef np.ndarray[DTYPE_t, ndim=1] result_ice = (x**3)*(IceC+IceD*(x**2)+IceE*(x**6))/(1+IceF*(x**2)+IceG*(x**4)+IceH*(x**8))

    return (DensityIceProfile*result_ice+DensityDustProfile*result_dust)/DensityProfile

I then run the following commands:

def compute_python(u, PorosityProfile, DensityIceProfile, DensityDustProfile, DensityProfile):

    DustJ, DustF, DustG, DustH, DustI = 250.0, 633.0, 2.513, -2.2e-3, -2.8e-6   
    IceI, IceC, IceD, IceE, IceF, IceG, IceH =  273.16, 1.843e5, 1.6357e8, 3.5519e9, 1.6670e2,  6.4650e4, 1.6935e6

    delta = u-DustJ
    result_dust = DustF+DustG*delta+DustH*delta**2+DustI*(delta**3);

    x= u/IceI;
    result_ice = (x**3)*(IceC+IceD*(x**2)+IceE*(x**6))/(1+IceF*(x**2)+IceG*(x**4)+IceH*(x**8))

    return (DensityIceProfile*result_ice+DensityDustProfile*result_dust)/DensityProfile

import sublimation
import numpy as np

%timeit compute_python(np.random.rand(100),np.random.rand(100),np.random.rand(100),np.random.rand(100),np.random.rand(100))

%timeit compute_cython(np.random.rand(100),np.random.rand(100),np.random.rand(100),np.random.rand(100),np.random.rand(100))

%timeit compute_cythonOptimized(np.random.rand(100),np.random.rand(100),np.random.rand(100),np.random.rand(100),np.random.rand(100))

Which results in the following:

For the pure python: 68.9 μs ± 851 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

For the non optimized cython: 68.2 μs ± 685 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

And for the optimized one: 72.7 μs ± 416 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

What am I doing wrong ?

Thanks for your help,

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

A solution using Numba

CodeSurgeon already gave an excellent answer using Cython. In this answer I wan't to show an alternative way using Numba.

I have created three versions. In naive_numba I only have added an function decorator. In improved_Numba I have manually combined the loops (every vectorized command is actually a loop). In improved_Numba_p I have parallelized the function. Please note that there is obviously a Bug not allowing to define constant values when using the pararallel accelerator. It has also be noted that the parallelized version is only beneficial for larger input arrays. But you can also add a small wrapper which calls the single threaded or the parallelized version according to the input array size.

Code dtype=float64

import numba as nb
import numpy as np
import time



@nb.njit(fastmath=True)
def naive_Numba(u, PorosityProfile, DensityIceProfile, DensityDustProfile, DensityProfile):
  DustJ, DustF, DustG, DustH, DustI = 250.0, 633.0, 2.513, -2.2e-3, -2.8e-6   
  IceI, IceC, IceD, IceE, IceF, IceG, IceH =  273.16, 1.843e5, 1.6357e8, 3.5519e9, 1.6670e2,  6.4650e4, 1.6935e6

  delta = u-DustJ
  result_dust = DustF+DustG*delta+DustH*delta**2+DustI*(delta**3);

  x= u/IceI;
  result_ice = (x**3)*(IceC+IceD*(x**2)+IceE*(x**6))/(1+IceF*(x**2)+IceG*(x**4)+IceH*(x**8))

  return (DensityIceProfile*result_ice+DensityDustProfile*result_dust)/DensityProfile

#error_model='numpy' sets divison by 0 to NaN instead of throwing a exception, this allows vectorization
@nb.njit(fastmath=True,error_model='numpy')
def improved_Numba(u, PorosityProfile, DensityIceProfile, DensityDustProfile, DensityProfile):
  DustJ, DustF, DustG, DustH, DustI = 250.0, 633.0, 2.513, -2.2e-3, -2.8e-6   
  IceI, IceC, IceD, IceE, IceF, IceG, IceH =  273.16, 1.843e5, 1.6357e8, 3.5519e9, 1.6670e2,  6.4650e4, 1.6935e6
  res=np.empty(u.shape[0],dtype=u.dtype)

  for i in range(u.shape[0]):
    delta = u[i]-DustJ
    result_dust = DustF+DustG*delta+DustH*delta**2+DustI*(delta**3);

    x= u[i]/IceI
    result_ice = (x**3)*(IceC+IceD*(x**2)+IceE*(x**6))/(1+IceF*(x**2)+IceG*(x**4)+IceH*(x**8))

    res[i]=(DensityIceProfile[i]*result_ice+DensityDustProfile[i]*result_dust)/DensityProfile[i]

  return res

#there is obviously a bug in Numba (declaring const values in the function)
@nb.njit(fastmath=True,parallel=True,error_model='numpy')
def improved_Numba_p(u, PorosityProfile, DensityIceProfile, DensityDustProfile, DensityProfile,DustJ, DustF, DustG, DustH, DustI,IceI, IceC, IceD, IceE, IceF, IceG, IceH):
  res=np.empty((u.shape[0]),dtype=u.dtype)

  for i in nb.prange(u.shape[0]):
    delta = u[i]-DustJ
    result_dust = DustF+DustG*delta+DustH*delta**2+DustI*(delta**3);

    x= u[i]/IceI
    result_ice = (x**3)*(IceC+IceD*(x**2)+IceE*(x**6))/(1+IceF*(x**2)+IceG*(x**4)+IceH*(x**8))

    res[i]=(DensityIceProfile[i]*result_ice+DensityDustProfile[i]*result_dust)/DensityProfile[i]

  return res

u=np.array(np.random.rand(1000000),dtype=np.float32)
PorosityProfile=np.array(np.random.rand(1000000),dtype=np.float32)
DensityIceProfile=np.array(np.random.rand(1000000),dtype=np.float32)
DensityDustProfile=np.array(np.random.rand(1000000),dtype=np.float32)
DensityProfile=np.array(np.random.rand(1000000),dtype=np.float32)
DustJ, DustF, DustG, DustH, DustI = 250.0, 633.0, 2.513, -2.2e-3, -2.8e-6
IceI, IceC, IceD, IceE, IceF, IceG, IceH =  273.16, 1.843e5, 1.6357e8, 3.5519e9, 1.6670e2,  6.4650e4, 1.6935e6

#don't measure compilation overhead on first call
res=improved_Numba_p(u, PorosityProfile, DensityIceProfile, DensityDustProfile, DensityProfile,DustJ, DustF, DustG, DustH, DustI,IceI, IceC, IceD, IceE, IceF, IceG, IceH) 
for i in range(1000):
  res=improved_Numba_p(u, PorosityProfile, DensityIceProfile, DensityDustProfile, DensityProfile,DustJ, DustF, DustG, DustH, DustI,IceI, IceC, IceD, IceE, IceF, IceG, IceH)

print(time.time()-t1)
print(time.time()-t1)

Performance

Arraysize np.random.rand(100)
Numpy             46.8μs
naive Numba       3.1μs
improved Numba:   1.62μs
improved_Numba_p: 17.45μs


#Arraysize np.random.rand(1000000)
Numpy             255.8ms
naive Numba       18.6ms
improved Numba:   6.13ms
improved_Numba_p: 3.54ms

Code dtype=np.float32

If np.float32 is sufficient you have to explicitly declare all constant values in the function to float32. Otherwise Numba will use float64.

@nb.njit(fastmath=True,error_model='numpy')
def improved_Numba(u, PorosityProfile, DensityIceProfile, DensityDustProfile, DensityProfile):
  DustJ, DustF, DustG, DustH, DustI = nb.float32(250.0), nb.float32(633.0), nb.float32(2.513), nb.float32(-2.2e-3), nb.float32(-2.8e-6)
  IceI, IceC, IceD, IceE, IceF, IceG, IceH =  nb.float32(273.16), nb.float32(1.843e5), nb.float32(1.6357e8), nb.float32(3.5519e9), nb.float32(1.6670e2),  nb.float32(6.4650e4), nb.float32(1.6935e6)
  res=np.empty(u.shape[0],dtype=u.dtype)

  for i in range(u.shape[0]):
    delta = u[i]-DustJ
    result_dust = DustF+DustG*delta+DustH*delta**2+DustI*(delta**3)

    x= u[i]/IceI
    result_ice = (x**3)*(IceC+IceD*(x**2)+IceE*(x**6))/(nb.float32(1)+IceF*(x**2)+IceG*(x**4)+IceH*(x**8))

    res[i]=(DensityIceProfile[i]*result_ice+DensityDustProfile[i]*result_dust)/DensityProfile[i]

  return res

@nb.njit(fastmath=True,parallel=True,error_model='numpy')
def improved_Numba_p(u, PorosityProfile, DensityIceProfile, DensityDustProfile, DensityProfile):
  res=np.empty((u.shape[0]),dtype=u.dtype)
  DustJ, DustF, DustG, DustH, DustI = nb.float32(250.0), nb.float32(633.0), nb.float32(2.513), nb.float32(-2.2e-3), nb.float32(-2.8e-6)
  IceI, IceC, IceD, IceE, IceF, IceG, IceH =  nb.float32(273.16), nb.float32(1.843e5), nb.float32(1.6357e8), nb.float32(3.5519e9), nb.float32(1.6670e2),  nb.float32(6.4650e4), nb.float32(1.6935e6)

  for i in nb.prange(u.shape[0]):
    delta = u[i]-DustJ
    result_dust = DustF+DustG*delta+DustH*delta**2+DustI*(delta**3)

    x= u[i]/IceI
    result_ice = (x**3)*(IceC+IceD*(x**2)+IceE*(x**6))/(nb.float32(1)+IceF*(x**2)+IceG*(x**4)+IceH*(x**8))

    res[i]=(DensityIceProfile[i]*result_ice+DensityDustProfile[i]*result_dust)/DensityProfile[i]

  return res

Performance

Arraysize np.random.rand(100).astype(np.float32)
Numpy             29.3μs
improved Numba:   1.33μs
improved_Numba_p: 18μs


Arraysize np.random.rand(1000000).astype(np.float32)
Numpy             117ms
improved Numba:   2.46ms
improved_Numba_p: 1.56ms

The comparison to the Cython version provided by @CodeSurgeon isn't really fair because he didn't compile the function with enabled AVX2 and FMA3 instructions. Numba compiles by default with -march=native which enables AVX2 and FMA3 instructions on my Core i7-4xxx.

But this makes sence if you wan't to distribute a compiled Cython version of your code, because it won't run by default on pre Haswell processors (or all Pentium and Celerons) if that optimizations are enabled. Compiling multiple code paths should be possible, but is compiler dependend and more work.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...