Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
439 views
in Technique[技术] by (71.8m points)

c++11 - Does x86-SSE-instructions have an automatic release-acquire order?

As we know from from C11-memory_order: http://en.cppreference.com/w/c/atomic/memory_order

And the same from C++11-std::memory_order: http://en.cppreference.com/w/cpp/atomic/memory_order

On strongly-ordered systems (x86, SPARC, IBM mainframe), release-acquire ordering is automatic. No additional CPU instructions are issued for this synchronization mode, only certain compiler optimizations are affected (e.g. the compiler is prohibited from moving non-atomic stores past the atomic store-release or perform non-atomic loads earlier than the atomic load-acquire)

But is this true for x86-SSE-instructions (except of [NT] - non-temporal, where we always must use L/S/MFENCE)?

Here said, that "sse instructions ... is no requirement on backwards compatibility and memory order is undefined". It is believed that the strict orderability left for compatibility with older versions of processors x86, when it was needed, but new commands, namely SSE(except of [NT]) - deprived automatically release-acquire of order, is it?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Here is an excerpt from Intel's Software Developers Manual, volume 3, section 8.2.2 (the edition 325384-052US of September 2014):

  • Reads are not reordered with other reads.
  • Writes are not reordered with older reads.
  • Writes to memory are not reordered with other writes, with the following exceptions:
    • writes executed with the CLFLUSH instruction;
    • streaming stores (writes) executed with the non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD); and
    • string operations (see Section 8.2.4.1).
  • Reads may be reordered with older writes to different locations but not with older writes to the same location.
  • Reads or writes cannot be reordered with I/O instructions, locked instructions, or serializing instructions.
  • Reads cannot pass earlier LFENCE and MFENCE instructions.
  • Writes cannot pass earlier LFENCE, SFENCE, and MFENCE instructions.
  • LFENCE instructions cannot pass earlier reads.
  • SFENCE instructions cannot pass earlier writes.
  • MFENCE instructions cannot pass earlier reads or writes.

The first three bullets describe the release-acquire ordering, and the exceptions are explicitly listed there. As you might see, only cacheability control instructions (MOVNT*) are in the exception list, while the rest of SSE/SSE2 and other vector instructions obey to the general memory ordering rules, and do not require use of [LSM]FENCE.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...