Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
410 views
in Technique[技术] by (71.8m points)

python - How to find all elements in a numpy 2-dimensional array that match a certain list?

I have a 2-dimensional NumPy array, for example:

array([[1, 1, 0, 2, 2],
       [1, 1, 0, 2, 0],
       [0, 0, 0, 0, 0],
       [3, 3, 0, 4, 4],
       [3, 3, 0, 4, 4]])

I would like to get all elements from that array which are in a certain list, for example (1, 3, 4). The desired result in the example case would be:

array([[1, 1, 0, 0, 0],
       [1, 1, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [3, 3, 0, 4, 4],
       [3, 3, 0, 4, 4]])

I know that I can just do (as recommended here Numpy: find elements within range):

np.logical_or(
    np.logical_or(cc_labeled == 1, cc_labeled == 3),
    cc_labeled == 4
)

, but this will be only reasonably effective in the example case. In reality iteratively using for loop and numpy.logical_or turned out to be really slow since the list of possible values is in thousands (and numpy array has approximately the dimension of 1000 x 1000).

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can use np.in1d -

A*np.in1d(A,[1,3,4]).reshape(A.shape)

Also, np.where could be used -

np.where(np.in1d(A,[1,3,4]).reshape(A.shape),A,0)

You can also use np.searchsorted to find such matches by using its optional 'side' argument with inputs as left and right and noting that for the matches, the searchsorted would output different results with these two inputs. Thus, an equivalent of np.in1d(A,[1,3,4]) would be -

M = np.searchsorted([1,3,4],A.ravel(),'left') != 
    np.searchsorted([1,3,4],A.ravel(),'right')

Thus, the final output would be -

out = A*M.reshape(A.shape)

Please note that if the input search list is not sorted, you need to use the optional argumentsorter with its argsort indices in np.searchsorted.

Sample run -

In [321]: A
Out[321]: 
array([[1, 1, 0, 2, 2],
       [1, 1, 0, 2, 0],
       [0, 0, 0, 0, 0],
       [3, 3, 0, 4, 4],
       [3, 3, 0, 4, 4]])

In [322]: A*np.in1d(A,[1,3,4]).reshape(A.shape)
Out[322]: 
array([[1, 1, 0, 0, 0],
       [1, 1, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [3, 3, 0, 4, 4],
       [3, 3, 0, 4, 4]])

In [323]: np.where(np.in1d(A,[1,3,4]).reshape(A.shape),A,0)
Out[323]: 
array([[1, 1, 0, 0, 0],
       [1, 1, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [3, 3, 0, 4, 4],
       [3, 3, 0, 4, 4]])

In [324]: M = np.searchsorted([1,3,4],A.ravel(),'left') != 
     ...:     np.searchsorted([1,3,4],A.ravel(),'right')
     ...: A*M.reshape(A.shape)
     ...: 
Out[324]: 
array([[1, 1, 0, 0, 0],
       [1, 1, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [3, 3, 0, 4, 4],
       [3, 3, 0, 4, 4]])

Runtime tests and verify outputs -

In [309]: # Inputs
     ...: A = np.random.randint(0,1000,(400,500))
     ...: lst = np.sort(np.random.randint(0,1000,(100))).tolist()
     ...: 
     ...: def func1(A,lst):                         
     ...:   return A*np.in1d(A,lst).reshape(A.shape)
     ...: 
     ...: def func2(A,lst):                         
     ...:   return np.where(np.in1d(A,lst).reshape(A.shape),A,0)
     ...: 
     ...: def func3(A,lst):                         
     ...:   mask = np.searchsorted(lst,A.ravel(),'left') != 
     ...:          np.searchsorted(lst,A.ravel(),'right')
     ...:   return A*mask.reshape(A.shape)
     ...: 

In [310]: np.allclose(func1(A,lst),func2(A,lst))
Out[310]: True

In [311]: np.allclose(func1(A,lst),func3(A,lst))
Out[311]: True

In [312]: %timeit func1(A,lst)
10 loops, best of 3: 30.9 ms per loop

In [313]: %timeit func2(A,lst)
10 loops, best of 3: 30.9 ms per loop

In [314]: %timeit func3(A,lst)
10 loops, best of 3: 28.6 ms per loop

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...