Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
619 views
in Technique[技术] by (71.8m points)

java - decimal value of the number formed by concatenating the binary representations of first n natural numbers

Given a number n, find the decimal value of the number formed by concatenating the binary representations of first n natural numbers.
Print answer modulo 10^9+7.

Also, n can be as big as 10^9 and hence logarithmic time approach is needed.

Eg: n=4, Answer = 220

Explanation: Number formed=11011100 (1=1,2=10,3=11,4=100). Decimal value of 11011100="220".

The code I am using below only works for first integers N<=15

    String input = "";
    for(int i = 1;i<=n;i++) {
        input += (Integer.toBinaryString(i));
    }
    return Integer.parseInt(input,2);
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This solution to this question requires O(N) time. Luckily this can be solved in O(logN) time. Also, this is the A047778 sequence:

1,6,27,220,1765,14126,113015,1808248,28931977, 462911642,7406586283,118505380540,1896086088653, 30337377418462,485398038695407,15532737238253040, 497047591624097297,15905522931971113522

The sequence follows this recurrence relation: enter image description here where ?.? is floor function

a(n) can also be expressed as sum of multiple arithmetico–geometric series.

If we are interested in a(14), here's how it can be calculated.

enter image description here

Multiplying with powers of two on both sides of the above equations gives equations like the following:

enter image description here

If we add all the above equations, a(14) can be expressed as sum of four arithmetico–geometric series. enter image description here

It's important to note that in all sequences except the first one, the first term of the arithmetic progression is of form enter image description here and the last term enter image description here

The sum of n terms of arithmetico–geometric sequence can be calculated using this formula : enter image description here

a(First term of AP), n(Number of terms), d(Common Difference of AP), b(First term of GP), r(Common ratio of GP). 

Since we're interested in a(n) mod 1000000007 and not the actual term a(n), these modulo arithmetics may come in handy.

enter image description here

This is a good starting point for implementing division modulo which requires some number theory basics.

Once we figure out the number of sequences required and the five variables a, n, d, b, r for each sequence, a(n) modulo 1000000007 can be calculated in O(logn) time.

Here's a working C++ code :

#include <numeric>
#include <iostream>
#define mod long(1e9+7)

long multiply(long a,long b){
    a%= mod;b%= mod;
    return (a*b)%mod;
}

void inverseModulo(long a,long m,long *x,long *y){ //ax congruent to 1 mod m

    if(!a){
        *x=0;
        *y=1;
        return ;
    }
    long x1,y1;
    inverseModulo(m%a,a,&x1,&y1);
    *x=y1-(m/a)*x1;
    *y=x1;
    return;
}

long moduloDivision(long a,long b,long m){  // (a*(returnValue))mod m congruent to b mod m
    //https://www.geeksforgeeks.org/modular-division/ and https://www.geeksforgeeks.org/multiplicative-inverse-under-modulo-m/
    long x,y;
    inverseModulo(b, m, &x, &y);
    x%=m;
    return (x*a)%m;
}

long power(long n,long r){ //calculates (n^r)%mod in logarithmic time
    if(r==0) return 1;
    if(r==1) return n;
    if(r%2){
        auto tmp=power(n, (r-1)/2);
        return multiply(multiply(n,tmp),tmp);
    }
    auto tmp=power(n, r/2);
    return multiply(tmp, tmp);
}
long sumOfAGPSeries(long a,long d,long b,long r,long n){
    if(r==1) return multiply(n, multiply(a, 2)+multiply(n-1, d))/2;
    long left=multiply(multiply(d, r), power(r,n-1)-1);
    left=a+moduloDivision(left,r-1,mod);
    left=multiply(left, b);
    left%=mod;
    long right=multiply(multiply(b, power(r, n)), a+multiply(n-1, d));
    long ans=right-left;
    ans=(ans%mod + mod) % mod;
    return moduloDivision(ans,r-1,mod);

}
signed main(){
    long N=1000;
    long ans = 0;
    long bitCountOfN = log2(N) + 1;
    long nearestPowerOfTwo = pow(2, bitCountOfN - 1);
    long startOfGP = 0;
    while (nearestPowerOfTwo) { // iterating over each arithmetico–geometric sequence
        long a, d, b, r, n;
        a = N;
        d = -1;
        b = power(2, startOfGP);
        r = power(2, bitCountOfN);
        n = N - nearestPowerOfTwo + 1;
        ans += sumOfAGPSeries(a, d, b, r, n);
        ans %= mod;
        startOfGP += n * bitCountOfN;
        N = nearestPowerOfTwo - 1;
        nearestPowerOfTwo >>= 1;
        bitCountOfN--;
    }
    std::cout << ans << std::endl;
    return 0;
}

The validity of the above C++ code can be verified using this trivial python code :

def a(n): 
  return int("".join([(bin(i))[2:] for i in range(1, n+1)]), 2)
for n in range(1,100):
  print (a(n)%1000000007)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...