You want
coef(summary(fit))[,4]
which extracts the column vector of p values from the tabular output shown by summary(fit)
. The p-values aren't actually computed until you run summary()
on the model fit.
By the way, use extractor functions rather than delve into objects if you can:
fit$coefficients[2]
should be
coef(fit)[2]
If there aren't extractor functions, str()
is your friend. It allows you to look at the structure of any object, which allows you to see what the object contains and how to extract it:
summ <- summary(fit)
> str(summ, max = 1)
List of 17
$ call : language glm(formula = counts ~ outcome + treatment, family = poisson())
$ terms :Classes 'terms', 'formula' length 3 counts ~ outcome + treatment
.. ..- attr(*, "variables")= language list(counts, outcome, treatment)
.. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
.. .. ..- attr(*, "dimnames")=List of 2
.. ..- attr(*, "term.labels")= chr [1:2] "outcome" "treatment"
.. ..- attr(*, "order")= int [1:2] 1 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(counts, outcome, treatment)
.. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "factor" "factor"
.. .. ..- attr(*, "names")= chr [1:3] "counts" "outcome" "treatment"
$ family :List of 12
..- attr(*, "class")= chr "family"
$ deviance : num 5.13
$ aic : num 56.8
$ contrasts :List of 2
$ df.residual : int 4
$ null.deviance : num 10.6
$ df.null : int 8
$ iter : int 4
$ deviance.resid: Named num [1:9] -0.671 0.963 -0.17 -0.22 -0.956 ...
..- attr(*, "names")= chr [1:9] "1" "2" "3" "4" ...
$ coefficients : num [1:5, 1:4] 3.04 -4.54e-01 -2.93e-01 1.34e-15 1.42e-15 ...
..- attr(*, "dimnames")=List of 2
$ aliased : Named logi [1:5] FALSE FALSE FALSE FALSE FALSE
..- attr(*, "names")= chr [1:5] "(Intercept)" "outcome2" "outcome3" "treatment2" ...
$ dispersion : num 1
$ df : int [1:3] 5 4 5
$ cov.unscaled : num [1:5, 1:5] 0.0292 -0.0159 -0.0159 -0.02 -0.02 ...
..- attr(*, "dimnames")=List of 2
$ cov.scaled : num [1:5, 1:5] 0.0292 -0.0159 -0.0159 -0.02 -0.02 ...
..- attr(*, "dimnames")=List of 2
- attr(*, "class")= chr "summary.glm"
Hence we note the coefficients
component which we can extract using coef()
, but other components don't have extractors, like null.deviance
, which you can extract as summ$null.deviance
.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…