Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
335 views
in Technique[技术] by (71.8m points)

jit - What are Torch Scripts in PyTorch?

I've just found that PyTorch docs expose something that is called Torch Scripts. However, I do not know:

  • When they should be used?
  • How they should be used?
  • What are their benefits?
question from:https://stackoverflow.com/questions/53900396/what-are-torch-scripts-in-pytorch

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Torch Script is one of two modes of using the PyTorch just in time compiler, the other being tracing. The benefits are explained in the linked documentation:

Torch Script is a way to create serializable and optimizable models from PyTorch code. Any code written in Torch Script can be saved from your Python process and loaded in a process where there is no Python dependency.

The above quote is actually true both of scripting and tracing. So

  1. You gain the ability to serialize your models and later run them outside of Python, via LibTorch, a C++ native module. This allows you to embed your DL models in various production environments like mobile or IoT. There is an official guide on exporting models to C++ here.
  2. PyTorch can compile your jit-able modules rather than running them as an interpreter, allowing for various optimizations and improving performance, both during training and inference. This is equally helpful for development and production.

Regarding Torch Script specifically, in comparison to tracing, it is a subset of Python, specified in detail here, which, when adhered to, can be compiled by PyTorch. It is more laborious to write Torch Script modules instead of tracing regular nn.Module subclasses, but it allows for some extra features over tracing, most notably flow control like if statements or for loops. Tracing treats such flow control as "constant" - in other words, if you have an if model.training clause in your module and trace it with training=True, it will always behave this way, even if you change the training variable to False later on.

To answer your first question, you need to use jit if you want to deploy your models outside Python and otherwise you should use jit if you want to gain some execution performance at the price of extra development effort (as not every model can be straightforwardly made compliant with jit). In particular, you should use Torch Script if your code cannot be jited with tracing alone because it relies on some features such as if statements. For maximum ergonomy, you probably want to mix the two on a case-by-case basis.

Finally, for how they should be used, please refer to all the documentation and tutorial links.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...