Not enough data is returned to perform what you want. Using SO find min/max technique would work by analysing max
column if data set did have consecutive local maximums.
import yahooquery
import matplotlib.pyplot as plt
import pandas as pd, numpy as np
from scipy.signal import argrelextrema
ticker = yahooquery.Ticker('MSFT', asynchronous=True)
df = ticker.history()
df = df.reset_index()
n = 5
df['min'] = df.iloc[argrelextrema(df.close.values, np.less_equal,
order=n)[0]]['close']
df['max'] = df.iloc[argrelextrema(df.close.values, np.greater_equal,
order=n)[0]]['close']
plt.scatter(df["date"], df['min'], c='r')
plt.scatter(df["date"], df['max'], c='g')
plt.plot(df["date"], df["close"])
plt.show()
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…