Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
937 views
in Technique[技术] by (71.8m points)

openssl - How can I transform between the two styles of public key format, one "BEGIN RSA PUBLIC KEY", the other is "BEGIN PUBLIC KEY"

How can I transform between the two styles of public key format, one format is:

-----BEGIN PUBLIC KEY-----
...
-----END PUBLIC KEY-----

the other format is:

-----BEGIN RSA PUBLIC KEY-----
...
-----END RSA PUBLIC KEY-----

for example I generated id_rsa/id_rsa.pub pair using ssh-keygen command, I calculated the public key from id_rsa using:

openssl rsa -in id_rsa -pubout -out pub2 

then again I calculated the public key from id_rsa.pub using :

ssh-keygen -f id_rsa.pub -e -m pem > pub1

the content is pub1 is :

-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END RSA PUBLIC KEY-----

and the content of pub2 is :

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB
-----END PUBLIC KEY-----

According to my understanding, pub1 and pub2 contain the same public key information, but they are in different format, I wonder how can I transform between the two format? Can anyone show me some concise introduction on the tow formats?

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I wanted to help explain what's going on here.

An RSA "Public Key" consists of two numbers:

  • the modulus (e.g. a 2,048 bit number)
  • the exponent (usually 65,537)

Using your RSA public key as an example, the two numbers are:

  • Modulus: 297,056,429,939,040,947,991,047,334,197,581,225,628,107,021,573,849,359,042,679,698,093,131,908,015,712,695,688,944,173,317,630,555,849,768,647,118,986,535,684,992,447,654,339,728,777,985,990,170,679,511,111,819,558,063,246,667,855,023,730,127,805,401,069,042,322,764,200,545,883,378,826,983,730,553,730,138,478,384,327,116,513,143,842,816,383,440,639,376,515,039,682,874,046,227,217,032,079,079,790,098,143,158,087,443,017,552,531,393,264,852,461,292,775,129,262,080,851,633,535,934,010,704,122,673,027,067,442,627,059,982,393,297,716,922,243,940,155,855,127,430,302,323,883,824,137,412,883,916,794,359,982,603,439,112,095,116,831,297,809,626,059,569,444,750,808,699,678,211,904,501,083,183,234,323,797,142,810,155,862,553,705,570,600,021,649,944,369,726,123,996,534,870,137,000,784,980,673,984,909,570,977,377,882,585,701
  • Exponent: 65,537

The question then becomes how do we want to store these numbers in a computer. First we convert both to hexadecimal:

  • Modulus: EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
  • Exponent: 010001

RSA invented the first format

RSA invented a format first:

RSAPublicKey ::= SEQUENCE {
    modulus           INTEGER,  -- n
    publicExponent    INTEGER   -- e
}

They chose to use the DER flavor of the ASN.1 binary encoding standard to represent the two numbers [1]:

SEQUENCE (2 elements)
   INTEGER (2048 bit): EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
   INTEGER (24 bit): 010001

The final binary encoding in ASN.1 is:

30 82 01 0A      ;sequence (0x10A bytes long)
   02 82 01 01   ;integer (0x101 bytes long)
      00 EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
   02 03         ;integer (3 bytes long)
      010001

If you then run all those bytes together and Base64 encode it, you get:

MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB

RSA labs then said add a header and trailer:

-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END RSA PUBLIC KEY-----

Five hyphens, and the words BEGIN RSA PUBLIC KEY. That is your PEM DER ASN.1 PKCS#1 RSA Public key

  • PEM: synonym for base64
  • DER: a flavor of ASN.1 encoding
  • ASN.1: the binary encoding scheme used
  • PKCS#1: The formal specification that dictates representing a public key as structure that consists of modulus followed by an exponent
  • RSA public key: the public key algorithm being used

Not just RSA

After that, other forms of public key cryptography came along:

  • Diffie-Hellman
  • Ellicptic Curve

When it came time to create a standard for how to represent the parameters of those encryption algorithms, people adopted a lot of the same ideas that RSA originally defined:

  • use ASN.1 binary encoding
  • base64 it
  • wrap it with five hyphens
  • and the words BEGIN PUBLIC KEY

But rather than using:

  • -----BEGIN RSA PUBLIC KEY-----
  • -----BEGIN DH PUBLIC KEY-----
  • -----BEGIN EC PUBLIC KEY-----

They decided instead to include the Object Identifier (OID) of what is to follow. In the case of an RSA public key, that is:

  • RSA PKCS#1: 1.2.840.113549.1.1.1

So for RSA public key it was essentially:

public struct RSAPublicKey {
   INTEGER modulus,
   INTEGER publicExponent 
}

Now they created SubjectPublicKeyInfo which is basically:

public struct SubjectPublicKeyInfo {
   AlgorithmIdentifier algorithm,
   RSAPublicKey subjectPublicKey
}

In actual DER ASN.1 definition is:

SubjectPublicKeyInfo  ::=  SEQUENCE  {
    algorithm  ::=  SEQUENCE  {
        algorithm               OBJECT IDENTIFIER, -- 1.2.840.113549.1.1.1 rsaEncryption (PKCS#1 1)
        parameters              ANY DEFINED BY algorithm OPTIONAL  },
    subjectPublicKey     BIT STRING {
        RSAPublicKey ::= SEQUENCE {
            modulus            INTEGER,    -- n
            publicExponent     INTEGER     -- e
        }
}

That gives you an ASN.1 of:

SEQUENCE (2 elements)
   SEQUENCE (2 elements)
      OBJECT IDENTIFIER 1.2.840.113549.1.1.1
      NULL
   BIT STRING (1 element)
      SEQUENCE (2 elements)
         INTEGER (2048 bit): EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
         INTEGER (24 bit): 010001

The final binary encoding in ASN.1 is:

30 82 01 22          ;SEQUENCE (0x122 bytes = 290 bytes)
|  30 0D             ;SEQUENCE (0x0d bytes = 13 bytes) 
|  |  06 09          ;OBJECT IDENTIFIER (0x09 = 9 bytes)
|  |  2A 86 48 86   
|  |  F7 0D 01 01 01 ;hex encoding of 1.2.840.113549.1.1
|  |  05 00          ;NULL (0 bytes)
|  03 82 01 0F 00    ;BIT STRING  (0x10f = 271 bytes)
|  |  30 82 01 0A       ;SEQUENCE (0x10a = 266 bytes)
|  |  |  02 82 01 01    ;INTEGER  (0x101 = 257 bytes)
|  |  |  |  00             ;leading zero of INTEGER
|  |  |  |  EB 50 63 99 F5 C6 12 F5  A6 7A 09 C1 19 2B 92 FA 
|  |  |  |  B5 3D B2 85 20 D8 59 CE  0E F6 B7 D8 3D 40 AA 1C 
|  |  |  |  1D CE 2C 07 20 D1 5A 0F  53 15 95 CA D8 1B A5 D1 
|  |  |  |  29 F9 1C C6 76 97 19 F1  43 58 72 C4 BC D0 52 11 
|  |  |  |  50 A0 26 3B 47 00 66 48  9B 91 8B FC A0 3C E8 A0
|  |  |  |  E9 FC 2C 03 14 C4 B0 96  EA 30 71 7C 03 C2 8C A2  
|  |  |  |  9E 67 8E 63 D7 8A CA 1E  9A 63 BD B1 26 1E E7 A0  
|  |  |  |  B0 41 AB 53 74 6D 68 B5  7B 68 BE F3 7B 71 38 28
|  |  |  |  38 C9 5D A8 55 78 41 A3  CA 58 10 9F 0B 4F 77 A5
|  |  |  |  E9 29 B1 A2 5D C2 D6 81  4C 55 DC 0F 81 CD 2F 4E 
|  |  |  |  5D B9 5E E7 0C 70 6F C0  2C 4F CA 35 8E A9 A8 2D 
|  |  |  |  80 43 A4 76 11 19 55 80  F8 94 58 E3 DA B5 59 2D
|  |  |  |  EF E0 6C DE 1E 51 6A 6C  61 ED 78 C1 39 77 AE 96 
|  |  |  |  60 A9 19 2C A7 5C D7 29  67 FD 3A FA FA 1F 1A 2F 
|  |  |  |  F6 32 5A 50 64 D8 47 02  8F 1E 6B 23 29 E8 57 2F 
|  |  |  |  36 E7 08 A5 49 DD A3 55  FC 74 A3 2F DD 8D BA 65
|  |  |  02 03          ;INTEGER (03 = 3 bytes)
|  |  |  |  010001
   

And as before, you take all those bytes, Base64 encode them, you end up with your second example:

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB   

Add the slightly different header and trailer, and you get:

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB   
-----END PUBLIC KEY-----

And this is your X.509 SubjectPublicKeyInfo/OpenSSL PEM public key [2].

Do it right, or hack it

Now that you know that the encoding isn't magic, you can write all the pieces needed to parse out the RSA modulus and exponent. Or you can recognize that the first 24 bytes are just added new stuff on top of the original PKCS#1 standard

30 82 01 22          ;SEQUENCE (0x122 bytes = 290 bytes)
|  30 0D             ;SEQUENCE (0x0d bytes = 13 bytes) 
|  |  06 09          ;OBJECT IDENTIFIER (0x09 = 9 bytes)
|  |  2A 86 48 86   
|  |  F7 0D 01 01 01 ;hex encoding of 1.2.840.113549.1.1
|  |  05 00          ;NULL (0 bytes)
|  03 82 01 0F 00    ;BIT STRING  (0x10f = 271 bytes)
|  |  ...

Those first 24-bytes are "new" stuff added:

30 82 01 22 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 03 82 01 0F 00

And due to an extraordinary coincidence of fortune and good luck:

24 bytes happens to correspond exactly to 32 base64 encoded characters

Because in Base64: 3-bytes becomes four characters:

30 82 01  22 30 0D  06 09 2A  86 48 86  F7 0D 01  01 01 05  00 03 82  01 0F 00
\______/  \______/  \______/  \______/  \______/  \__

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...