Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
276 views
in Technique[技术] by (71.8m points)

teradata - How to improve performance for slow Spark jobs using DataFrame and JDBC connection?

I am trying to access a mid-size Teradata table (~100 million rows) via JDBC in standalone mode on a single node (local[*]).

I am using Spark 1.4.1. and is setup on a very powerful machine(2 cpu, 24 cores, 126G RAM).

I have tried several memory setup and tuning options to make it work faster, but neither of them made a huge impact.

I am sure there is something I am missing and below is my final try that took about 11 minutes to get this simple counts vs it only took 40 seconds using a JDBC connection through R to get the counts.

bin/pyspark --driver-memory 40g --executor-memory 40g

df = sqlContext.read.jdbc("jdbc:teradata://......)
df.count()

When I tried with BIG table (5B records) then no results returned upon completion of query.

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

All of the aggregation operations are performed after the whole dataset is retrieved into memory into a DataFrame collection. So doing the count in Spark will never be as efficient as it would be directly in TeraData. Sometimes it's worth it to push some computation into the database by creating views and then mapping those views using the JDBC API.

Every time you use the JDBC driver to access a large table you should specify the partitioning strategy otherwise you will create a DataFrame/RDD with a single partition and you will overload the single JDBC connection.

Instead you want to try the following AI (since Spark 1.4.0+):

sqlctx.read.jdbc(
  url = "<URL>",
  table = "<TABLE>",
  columnName = "<INTEGRAL_COLUMN_TO_PARTITION>", 
  lowerBound = minValue,
  upperBound = maxValue,
  numPartitions = 20,
  connectionProperties = new java.util.Properties()
)

There is also an option to push down some filtering.

If you don't have an uniformly distributed integral column you want to create some custom partitions by specifying custom predicates (where statements). For example let's suppose you have a timestamp column and want to partition by date ranges:

    val predicates = 
  Array(
    "2015-06-20" -> "2015-06-30",
    "2015-07-01" -> "2015-07-10",
    "2015-07-11" -> "2015-07-20",
    "2015-07-21" -> "2015-07-31"
  )
  .map {
    case (start, end) => 
      s"cast(DAT_TME as date) >= date '$start'  AND cast(DAT_TME as date) <= date '$end'"
  }

 predicates.foreach(println) 

// Below is the result of how predicates were formed 
//cast(DAT_TME as date) >= date '2015-06-20'  AND cast(DAT_TME as date) <= date '2015-06-30'
//cast(DAT_TME as date) >= date '2015-07-01'  AND cast(DAT_TME as date) <= date '2015-07-10'
//cast(DAT_TME as date) >= date '2015-07-11'  AND cast(DAT_TME as date) <= date //'2015-07-20'
//cast(DAT_TME as date) >= date '2015-07-21'  AND cast(DAT_TME as date) <= date '2015-07-31'


sqlctx.read.jdbc(
  url = "<URL>",
  table = "<TABLE>",
  predicates = predicates,
  connectionProperties = new java.util.Properties()
)

It will generate a DataFrame where each partition will contain the records of each subquery associated to the different predicates.

Check the source code at DataFrameReader.scala


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...