You'll have to do a ping sweep. There's a Ping class in the System.Net namespace. Example follows. Also this is only possible if your computers don't have firewalls running. If they've got a firewall enabled, there's no way to determine this information short of doing SNMP queries on your switches.
System.Net.NetworkInformation.Ping p = new System.Net.NetworkInformation.Ping();
System.Net.NetworkInformation.PingReply rep = p.Send("192.168.1.1");
if (rep.Status == System.Net.NetworkInformation.IPStatus.Success)
{
//host is active
}
The other issue is to determine how large your network is. In most home situations, your network mask will be 24 bits. This means that its set to 255.255.255.0. If your gateway is 192.168.1.1, this means that valid addresses on your network will be 192.168.1.1 to 192.168.1.254. Here's an IP Calculator to help. You'll have to loop through each address and ping the address using the Ping class and check the PingReply.
If you're just looking for the information and aren't concerned with how you get it, you can use NMap. The command would be as follows
nmap -sP 192.168.1.0/24
EDIT:
As far as speed goes, since you're on a local network, you can cut down the timeout interval considerably as your machines shouldn't take more than 100 milliseconds to reply. You can also use SendAsync to ping them all in parallel. The following program will ping 254 address in under half a second.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net.NetworkInformation;
using System.Diagnostics;
using System.Net;
using System.Threading;
using System.Net.Sockets;
namespace ConsoleApplication1
{
class Program
{
static CountdownEvent countdown;
static int upCount = 0;
static object lockObj = new object();
const bool resolveNames = true;
static void Main(string[] args)
{
countdown = new CountdownEvent(1);
Stopwatch sw = new Stopwatch();
sw.Start();
string ipBase = "10.22.4.";
for (int i = 1; i < 255; i++)
{
string ip = ipBase + i.ToString();
Ping p = new Ping();
p.PingCompleted += new PingCompletedEventHandler(p_PingCompleted);
countdown.AddCount();
p.SendAsync(ip, 100, ip);
}
countdown.Signal();
countdown.Wait();
sw.Stop();
TimeSpan span = new TimeSpan(sw.ElapsedTicks);
Console.WriteLine("Took {0} milliseconds. {1} hosts active.", sw.ElapsedMilliseconds, upCount);
Console.ReadLine();
}
static void p_PingCompleted(object sender, PingCompletedEventArgs e)
{
string ip = (string)e.UserState;
if (e.Reply != null && e.Reply.Status == IPStatus.Success)
{
if (resolveNames)
{
string name;
try
{
IPHostEntry hostEntry = Dns.GetHostEntry(ip);
name = hostEntry.HostName;
}
catch (SocketException ex)
{
name = "?";
}
Console.WriteLine("{0} ({1}) is up: ({2} ms)", ip, name, e.Reply.RoundtripTime);
}
else
{
Console.WriteLine("{0} is up: ({1} ms)", ip, e.Reply.RoundtripTime);
}
lock(lockObj)
{
upCount++;
}
}
else if (e.Reply == null)
{
Console.WriteLine("Pinging {0} failed. (Null Reply object?)", ip);
}
countdown.Signal();
}
}
}
EDIT: After some use of it myself, I modified the program to output a count of how many IPs responded. There's a const
bool that if set to true, will cause the program resolve the host names of the IPs. This significantly slows down the scan, though. (under half a second to 16 seconds) Also found that if the IP address is incorrectly specified (made a typo myself), the reply object can be null, so I handled that.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…