Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
228 views
in Technique[技术] by (71.8m points)

O(n) algorithm to find the median of a collection of numbers

Problem: input is a (not necessarily sorted) sequence S = k1, k2, ..., kn of n arbitrary numbers. Consider the collection C of n2 numbers of the form min{ki,kj}, for 1 <=i, j<=n. Present an O(n) time and O(n) space algorithm to find the median of C.

So far I've found by examining C for different sets S that the number of instances of the smallest number in S in C is equal to (2n-1), the next smallest number: (2n-3) and so on until you only have one instance of the largest number.

Is there a way to use this information to find the median of C?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

There are a number of possibilities. One I like is Hoare's Select algorithm. The basic idea is similar to a Quicksort, except that when you recurse, you only recurse into the partition that will hold the number(s) you're looking for.

For example, if you want the median of 100 numbers, you'd start by partitioning the array, just like in Quicksort. You'd get two partitions -- one of which contains the 50th element. Recursively carry out your selection in that partition. Continue until your partition contains only one element, which will be the median (and note that you can do the same for another element of your choice).


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...