consider the dataframe df
df = pd.DataFrame(dict(A=list('aabb'), B=[1, 2, 3, 4], C=[0, 9, 0, 9]))
groupby
is the standard use aggregater
df.groupby('A').mean()
maybe you want these values broadcast across the whole group and return something with the same index as what you started with.
use transform
df.groupby('A').transform('mean')
df.set_index('A').groupby(level='A').transform('mean')
agg
is used when you have specific things you want to run for different columns or more than one thing run on the same column.
df.groupby('A').agg(['mean', 'std'])
df.groupby('A').agg(dict(B='sum', C=['mean', 'prod']))
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…