Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
241 views
in Technique[技术] by (71.8m points)

python - how to read numpy 2D array from string?

how can I read a numpy array from a string? take a string like:

[[ 0.5544  0.4456], [ 0.8811  0.1189]]

and convert it to an array:

a = from_string("[[ 0.5544  0.4456], [ 0.8811  0.1189]]")

where a becomes the object: np.array([[0.5544, 0.4456], [0.8811, 0.1189]])

update:

i'm looking for a very simple interface. a way to convert 2D arrays (of floats) to a string and then a way to read them back to reconstruct the array:

arr_to_string(array([[0.5544, 0.4456], [0.8811, 0.1189]])) should return "[[ 0.5544 0.4456], [ 0.8811 0.1189]]"

string_to_arr("[[ 0.5544 0.4456], [ 0.8811 0.1189]]") should return the object array([[0.5544, 0.4456], [0.8811, 0.1189]])

ideally it would be great if arr_to_string had a precision parameter that controlled the precision of floating points converted to strings, so that you wouldn't get entries like 0.4444444999999999999999999.

there's nothing i can find in numpy docs that does this both ways. np.save lets you make a string but then there's no way to load it back in (np.load only works for files.)

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The challenge is to save not only the data buffer, but also the shape and dtype. np.fromstring reads the data buffer, but as a 1d array; you have to get the dtype and shape from else where.

In [184]: a=np.arange(12).reshape(3,4)

In [185]: np.fromstring(a.tostring(),int)
Out[185]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

In [186]: np.fromstring(a.tostring(),a.dtype).reshape(a.shape)
Out[186]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

A time honored mechanism to save Python objects is pickle, and numpy is pickle compliant:

In [169]: import pickle

In [170]: a=np.arange(12).reshape(3,4)

In [171]: s=pickle.dumps(a*2)

In [172]: s
Out[172]: "cnumpy.core.multiarray
_reconstruct
p0
(cnumpy
ndarray
p1
(I0
tp2
S'b'
p3
tp4
Rp5
(I1
(I3
I4
tp6
cnumpy
dtype
p7
(S'i4'
p8
I0
I1
tp9
Rp10
(I3
S'<'
p11
NNNI-1
I-1
I0
tp12
bI00
S'\x00\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x06\x00\x00\x00\x08\x00\x00\x00\n\x00\x00\x00\x0c\x00\x00\x00\x0e\x00\x00\x00\x10\x00\x00\x00\x12\x00\x00\x00\x14\x00\x00\x00\x16\x00\x00\x00'
p13
tp14
b."

In [173]: pickle.loads(s)
Out[173]: 
array([[ 0,  2,  4,  6],
       [ 8, 10, 12, 14],
       [16, 18, 20, 22]])

There's a numpy function that can read the pickle string:

In [181]: np.loads(s)
Out[181]: 
array([[ 0,  2,  4,  6],
       [ 8, 10, 12, 14],
       [16, 18, 20, 22]])

You mentioned np.save to a string, but that you can't use np.load. A way around that is to step further into the code, and use np.lib.npyio.format.

In [174]: import StringIO

In [175]: S=StringIO.StringIO()  # a file like string buffer

In [176]: np.lib.npyio.format.write_array(S,a*3.3)

In [177]: S.seek(0)   # rewind the string

In [178]: np.lib.npyio.format.read_array(S)
Out[178]: 
array([[  0. ,   3.3,   6.6,   9.9],
       [ 13.2,  16.5,  19.8,  23.1],
       [ 26.4,  29.7,  33. ,  36.3]])

The save string has a header with dtype and shape info:

In [179]: S.seek(0)

In [180]: S.readlines()
Out[180]: 
["x93NUMPYx01x00Fx00{'descr': '<f8', 'fortran_order': False, 'shape': (3, 4), }          
",
 'x00x00x00x00x00x00x00x00ffffff
',
 '@ffffffx1a@xccxccxccxccxccxcc#@ffffff*@x00x00x00x00x00x800@xccxccxccxccxccxcc3@x99x99x99x99x99x197@ffffff:@33333xb3=@x00x00x00x00x00x80@@fffff&B@']

If you want a human readable string, you might try json.

In [196]: import json

In [197]: js=json.dumps(a.tolist())

In [198]: js
Out[198]: '[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]'

In [199]: np.array(json.loads(js))
Out[199]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

Going to/from the list representation of the array is the most obvious use of json. Someone may have written a more elaborate json representation of arrays.

You could also go the csv format route - there have been lots of questions about reading/writing csv arrays.


'[[ 0.5544  0.4456], [ 0.8811  0.1189]]'

is a poor string representation for this purpose. It does look a lot like the str() of an array, but with , instead of . But there isn't a clean way of parsing the nested [], and the missing delimiter is a pain. If it consistently uses , then json can convert it to list.

np.matrix accepts a MATLAB like string:

In [207]: np.matrix(' 0.5544,  0.4456;0.8811,  0.1189')
Out[207]: 
matrix([[ 0.5544,  0.4456],
        [ 0.8811,  0.1189]])

In [208]: str(np.matrix(' 0.5544,  0.4456;0.8811,  0.1189'))
Out[208]: '[[ 0.5544  0.4456]
 [ 0.8811  0.1189]]'

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...