Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
322 views
in Technique[技术] by (71.8m points)

python - Seaborn ValueError: zero-size array to reduction operation minimum which has no identity

I ran this scatter plot seaborn example from their own website,

import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
tips = sns.load_dataset("tips")

# this works:
ax = sns.scatterplot(x="total_bill", y="tip", data=tips)

# But adding 'hue' gives the error below:
ax = sns.scatterplot(x="total_bill", y="tip", hue="time", data=tips)

This error:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
e:Anaconda3libsite-packagesIPythoncoreformatters.py in __call__(self, obj)
    339                 pass
    340             else:
--> 341                 return printer(obj)
    342             # Finally look for special method names
    343             method = get_real_method(obj, self.print_method)

e:Anaconda3libsite-packagesIPythoncorepylabtools.py in <lambda>(fig)
    246 
    247     if 'png' in formats:
--> 248         png_formatter.for_type(Figure, lambda fig: print_figure(fig, 'png', **kwargs))
    249     if 'retina' in formats or 'png2x' in formats:
    250         png_formatter.for_type(Figure, lambda fig: retina_figure(fig, **kwargs))

e:Anaconda3libsite-packagesIPythoncorepylabtools.py in print_figure(fig, fmt, bbox_inches, **kwargs)
    130         FigureCanvasBase(fig)
    131 
--> 132     fig.canvas.print_figure(bytes_io, **kw)
    133     data = bytes_io.getvalue()
    134     if fmt == 'svg':

e:Anaconda3libsite-packagesmatplotlibackend_bases.py in print_figure(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox_inches, pad_inches, bbox_extra_artists, backend, **kwargs)
   2191                            else suppress())
   2192                     with ctx:
-> 2193                         self.figure.draw(renderer)
   2194 
   2195                     bbox_inches = self.figure.get_tightbbox(

e:Anaconda3libsite-packagesmatplotlibartist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     39                 renderer.start_filter()
     40 
---> 41             return draw(artist, renderer, *args, **kwargs)
     42         finally:
     43             if artist.get_agg_filter() is not None:

e:Anaconda3libsite-packagesmatplotlibfigure.py in draw(self, renderer)
   1861 
   1862             self.patch.draw(renderer)
-> 1863             mimage._draw_list_compositing_images(
   1864                 renderer, self, artists, self.suppressComposite)
   1865 

e:Anaconda3libsite-packagesmatplotlibimage.py in _draw_list_compositing_images(renderer, parent, artists, suppress_composite)
    129     if not_composite or not has_images:
    130         for a in artists:
--> 131             a.draw(renderer)
    132     else:
    133         # Composite any adjacent images together

e:Anaconda3libsite-packagesmatplotlibartist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     39                 renderer.start_filter()
     40 
---> 41             return draw(artist, renderer, *args, **kwargs)
     42         finally:
     43             if artist.get_agg_filter() is not None:

e:Anaconda3libsite-packagesmatplotlibcbookdeprecation.py in wrapper(*inner_args, **inner_kwargs)
    409                          else deprecation_addendum,
    410                 **kwargs)
--> 411         return func(*inner_args, **inner_kwargs)
    412 
    413     return wrapper

e:Anaconda3libsite-packagesmatplotlibaxes\_base.py in draw(self, renderer, inframe)
   2746             renderer.stop_rasterizing()
   2747 
-> 2748         mimage._draw_list_compositing_images(renderer, self, artists)
   2749 
   2750         renderer.close_group('axes')

e:Anaconda3libsite-packagesmatplotlibimage.py in _draw_list_compositing_images(renderer, parent, artists, suppress_composite)
    129     if not_composite or not has_images:
    130         for a in artists:
--> 131             a.draw(renderer)
    132     else:
    133         # Composite any adjacent images together

e:Anaconda3libsite-packagesmatplotlibartist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     39                 renderer.start_filter()
     40 
---> 41             return draw(artist, renderer, *args, **kwargs)
     42         finally:
     43             if artist.get_agg_filter() is not None:

e:Anaconda3libsite-packagesmatplotlibcollections.py in draw(self, renderer)
    929     def draw(self, renderer):
    930         self.set_sizes(self._sizes, self.figure.dpi)
--> 931         Collection.draw(self, renderer)
    932 
    933 

e:Anaconda3libsite-packagesmatplotlibartist.py in draw_wrapper(artist, renderer, *args, **kwargs)
     39                 renderer.start_filter()
     40 
---> 41             return draw(artist, renderer, *args, **kwargs)
     42         finally:
     43             if artist.get_agg_filter() is not None:

e:Anaconda3libsite-packagesmatplotlibcollections.py in draw(self, renderer)
    383             else:
    384                 combined_transform = transform
--> 385             extents = paths[0].get_extents(combined_transform)
    386             if (extents.width < self.figure.bbox.width
    387                     and extents.height < self.figure.bbox.height):

e:Anaconda3libsite-packagesmatplotlibpath.py in get_extents(self, transform, **kwargs)
    601                 xys.append(curve([0, *dzeros, 1]))
    602             xys = np.concatenate(xys)
--> 603         return Bbox([xys.min(axis=0), xys.max(axis=0)])
    604 
    605     def intersects_path(self, other, filled=True):

e:Anaconda3libsite-packages
umpycore\_methods.py in _amin(a, axis, out, keepdims, initial, where)
     41 def _amin(a, axis=None, out=None, keepdims=False,
     42           initial=_NoValue, where=True):
---> 43     return umr_minimum(a, axis, None, out, keepdims, initial, where)
     44 
     45 def _sum(a, axis=None, dtype=None, out=None, keepdims=False,

ValueError: zero-size array to reduction operation minimum which has no identity

Yesterday it did work. However, I ran an update of using conda update --all. Has something changed?

What's going on?

I run python on a Linux machine.

Pandas:  1.1.0.
Numpy:   1.19.1.
Seaborn api:  0.10.1.
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)
  • This issue seems to be resolved for matplotlib==3.3.2
  • seaborn: Scatterplot fails with matplotlib==3.3.1 #2194
  • With matplotlib version 3.3.1
  • A workaround is to send a list to hue, by using .tolist()
    • Use hue=tips.time.tolist().
  • The normal behavior adds a title to the legend, but sending a list to hue does not add the legend title.
    • The legend title can be added manually.
import seaborn as sns

# load data
tips = sns.load_dataset("tips")

# But adding 'hue' gives the error below:
ax = sns.scatterplot(x="total_bill", y="tip", hue=tips.time.tolist(), data=tips)
ax.legend(title='time')  # add a title to the legend

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...