Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
298 views
in Technique[技术] by (71.8m points)

python - Numpy isnan() fails on an array of floats (from pandas dataframe apply)

I have an array of floats (some normal numbers, some nans) that is coming out of an apply on a pandas dataframe.

For some reason, numpy.isnan is failing on this array, however as shown below, each element is a float, numpy.isnan runs correctly on each element, the type of the variable is definitely a numpy array.

What's going on?!

set([type(x) for x in tester])
Out[59]: {float}

tester
Out[60]: 
array([-0.7000000000000001, nan, nan, nan, nan, nan, nan, nan, nan, nan,
   nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
   nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
   nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
   nan, nan], dtype=object)

set([type(x) for x in tester])
Out[61]: {float}

np.isnan(tester)
Traceback (most recent call last):

File "<ipython-input-62-e3638605b43c>", line 1, in <module>
np.isnan(tester)

TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''

set([np.isnan(x) for x in tester])
Out[65]: {False, True}

type(tester)
Out[66]: numpy.ndarray
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

np.isnan can be applied to NumPy arrays of native dtype (such as np.float64):

In [99]: np.isnan(np.array([np.nan, 0], dtype=np.float64))
Out[99]: array([ True, False], dtype=bool)

but raises TypeError when applied to object arrays:

In [96]: np.isnan(np.array([np.nan, 0], dtype=object))
TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''

Since you have Pandas, you could use pd.isnull instead -- it can accept NumPy arrays of object or native dtypes:

In [97]: pd.isnull(np.array([np.nan, 0], dtype=float))
Out[97]: array([ True, False], dtype=bool)

In [98]: pd.isnull(np.array([np.nan, 0], dtype=object))
Out[98]: array([ True, False], dtype=bool)

Note that None is also considered a null value in object arrays.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...