Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
484 views
in Technique[技术] by (71.8m points)

algorithm - The sieve of Eratosthenes in F#

I am interested in an implementation of the sieve of eratosthenes in purely functional F#. I am interested in an implementation of the actual sieve, not the naive functional implementation that isn't really the sieve, so not something like this:

let rec PseudoSieve list =
    match list with
    | hd::tl -> hd :: (PseudoSieve <| List.filter (fun x -> x % hd <> 0) tl)
    | [] -> []

The second link above briefly describes an algorithm that would require the use of a multimap, which isn't available in F# as far as I know. The Haskell implementation given uses a map that supports an insertWith method, which I haven't seen available in the F# functional map.

Does anyone know a way to translate the given Haskell map code to F#, or perhaps knows of alternative implementation methods or sieving algorithms that are as efficient and better suited for a functional implementation or F#?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Reading that article I came up with an idea that doesn't require a multimap. It handles colliding map keys by moving the colliding key forward by its prime value again and again until it reaches a key that isn't in the map. Below primes is a map with keys of the next iterator value and values that are primes.

let primes = 
    let rec nextPrime n p primes =
        if primes |> Map.containsKey n then
            nextPrime (n + p) p primes
        else
            primes.Add(n, p)

    let rec prime n primes =
        seq {
            if primes |> Map.containsKey n then
                let p = primes.Item n
                yield! prime (n + 1) (nextPrime (n + p) p (primes.Remove n))
            else
                yield n
                yield! prime (n + 1) (primes.Add(n * n, n))
        }

    prime 2 Map.empty

Here's the priority queue based algorithm from that paper without the square optimization. I placed the generic priority queue functions at the top. I used a tuple to represent the lazy list iterators.

let primes() = 
    // the priority queue functions
    let insert = Heap.Insert
    let findMin = Heap.Min
    let insertDeleteMin = Heap.DeleteInsert

    // skips primes 2, 3, 5, 7
    let wheelData = [|2L;4L;2L;4L;6L;2L;6L;4L;2L;4L;6L;6L;2L;6L;4L;2L;6L;4L;6L;8L;4L;2L;4L;2L;4L;8L;6L;4L;6L;2L;4L;6L;2L;6L;6L;4L;2L;4L;6L;2L;6L;4L;2L;4L;2L;10L;2L;10L|]

    // increments iterator
    let wheel (composite, n, prime) =
        composite + wheelData.[n % 48] * prime, n + 1, prime

    let insertPrime prime n table =
        insert (prime * prime, n, prime) table

    let rec adjust x (table : Heap) =
        let composite, n, prime = findMin table

        if composite <= x then 
            table 
            |> insertDeleteMin (wheel (composite, n, prime))
            |> adjust x
        else
            table

    let rec sieve iterator table =
        seq {
            let x, n, _ = iterator
            let composite, _, _ = findMin table

            if composite <= x then
                yield! sieve (wheel iterator) (adjust x table)
            else
                if x = 13L then
                    yield! [2L; 3L; 5L; 7L; 11L]

                yield x
                yield! sieve (wheel iterator) (insertPrime x n table)
        }

    sieve (13L, 1, 1L) (insertPrime 11L 0 (Heap(0L, 0, 0L)))

Here's the priority queue based algorithm with the square optimization. In order to facilitate lazy adding primes to the lookup table, the wheel offsets had to be returned along with prime values. This version of the algorithm has O(sqrt(n)) memory usage where the none optimized one is O(n).

let rec primes2() : seq<int64 * int> = 
    // the priority queue functions
    let insert = Heap.Insert
    let findMin = Heap.Min
    let insertDeleteMin = Heap.DeleteInsert

    // increments iterator
    let wheel (composite, n, prime) =
        composite + wheelData.[n % 48] * prime, n + 1, prime

    let insertPrime enumerator composite table =
        // lazy initialize the enumerator
        let enumerator =
            if enumerator = null then
                let enumerator = primes2().GetEnumerator()
                enumerator.MoveNext() |> ignore
                // skip primes that are a part of the wheel
                while fst enumerator.Current < 11L do
                    enumerator.MoveNext() |> ignore
                enumerator
            else
                enumerator

        let prime = fst enumerator.Current
        // Wait to insert primes until their square is less than the tables current min
        if prime * prime < composite then
            enumerator.MoveNext() |> ignore
            let prime, n = enumerator.Current
            enumerator, insert (prime * prime, n, prime) table
        else
            enumerator, table

    let rec adjust x table =
        let composite, n, prime = findMin table

        if composite <= x then 
            table 
            |> insertDeleteMin (wheel (composite, n, prime))
            |> adjust x
        else
            table

    let rec sieve iterator (enumerator, table) = 
        seq {
            let x, n, _ = iterator
            let composite, _, _ = findMin table

            if composite <= x then
                yield! sieve (wheel iterator) (enumerator, adjust x table)
            else
                if x = 13L then
                    yield! [2L, 0; 3L, 0; 5L, 0; 7L, 0; 11L, 0]

                yield x, n
                yield! sieve (wheel iterator) (insertPrime enumerator composite table)
        }

    sieve (13L, 1, 1L) (null, insert (11L * 11L, 0, 11L) (Heap(0L, 0, 0L)))

Here's my test program.

type GenericHeap<'T when 'T : comparison>(defaultValue : 'T) =
    let mutable capacity = 1
    let mutable values = Array.create capacity defaultValue
    let mutable size = 0

    let swap i n =
        let temp = values.[i]
        values.[i] <- values.[n]
        values.[n] <- temp

    let rec rollUp i =
        if i > 0 then
            let parent = (i - 1) / 2
            if values.[i] < values.[parent] then
                swap i parent
                rollUp parent

    let rec rollDown i =
        let left, right = 2 * i + 1, 2 * i + 2

        if right < size then
            if values.[left] < values.[i] then
                if values.[left] < values.[right] then
                    swap left i
                    rollDown left
                else
                    swap right i
                    rollDown right
            elif values.[right] < values.[i] then
                swap right i
                rollDown right
        elif left < size then
            if values.[left] < values.[i] then
                swap left i

    member this.insert (value : 'T) =
        if size = capacity then
            capacity <- capacity * 2
            let newValues = Array.zeroCreate capacity
            for i in 0 .. size - 1 do
                newValues.[i] <- values.[i]
            values <- newValues

        values.[size] <- value
        size <- size + 1
        rollUp (size - 1)

    member this.delete () =
        values.[0] <- values.[size]
        size <- size - 1
        rollDown 0

    member this.deleteInsert (value : 'T) =
        values.[0] <- value
        rollDown 0

    member this.min () =
        values.[0]

    static member Insert (value : 'T) (heap : GenericHeap<'T>) =
        heap.insert value
        heap    

    static member DeleteInsert (value : 'T) (heap : GenericHeap<'T>) =
        heap.deleteInsert value
        heap    

    static member Min (heap : GenericHeap<'T>) =
        heap.min()

type Heap = GenericHeap<int64 * int * int64>

let wheelData = [|2L;4L;2L;4L;6L;2L;6L;4L;2L;4L;6L;6L;2L;6L;4L;2L;6L;4L;6L;8L;4L;2L;4L;2L;4L;8L;6L;4L;6L;2L;4L;6L;2L;6L;6L;4L;2L;4L;6L;2L;6L;4L;2L;4L;2L;10L;2L;10L|]

let primes() = 
    // the priority queue functions
    let insert = Heap.Insert
    let findMin = Heap.Min
    let insertDeleteMin = Heap.DeleteInsert

    // increments iterator
    let wheel (composite, n, prime) =
        composite + wheelData.[n % 48] * prime, n + 1, prime

    let insertPrime prime n table =
        insert (prime * prime, n, prime) table

    let rec adjust x (table : Heap) =
        let composite, n, prime = findMin table

        if composite <= x then 
            table 
            |> insertDeleteMin (wheel (composite, n, prime))
            |> adjust x
        else
            table

    let rec sieve iterator table =
        seq {
            let x, n, _ = iterator
            let composite, _, _ = findMin table

            if composite <= x then
                yield! sieve (wheel iterator) (adjust x table)
            else
                if x = 13L then
                    yield! [2L; 3L; 5L; 7L; 11L]

                yield x
                yield! sieve (wheel iterator) (insertPrime x n table)
        }

    sieve (13L, 1, 1L) (insertPrime 11L 0 (Heap(0L, 0, 0L)))

let rec primes2() : seq<int64 * int> = 
    // the priority queue functions
    let insert = Heap.Insert
    let findMin = Heap.Min
    let insertDeleteMin = Heap.DeleteInsert

    // increments iterator
    let wheel (composite, n, prime) =
        composite + wheelData.[n % 48] * prime, n + 1, prime

    let insertPrime enumerator composite table =
        // lazy initialize the enumerator
        let enumerator =
            if enumerator = null then
                let enumerator = primes2().GetEnumerator()
                enumerator.MoveNext() |> ignore
                // skip primes that are a part of the wheel
                while fst enumerator.Current < 11L do
                    enumerator.MoveNext() |> ignore
                enumerator
            else
                enumerator

        let prime = fst enumerator.Current
        // Wait to insert primes until their square is less than the tables current min
        if prime * prime < composite then
            enumerator.MoveNext() |> ignore
            let prime, n = enumerator.Current
            enumerator, insert (prime * prime, n, prime) table
        else
            enumerator, table

    let rec adjust x table =
        let composite, n, prime = findMin table

        if composite <= x then 
            table 
            |> insertDeleteMin (wheel (composite, n, prime))
            |> adjust x
        else
            table

    let rec sieve iterator (enumerator, table) = 
        seq {
            let x, n, _ = iterator
            let composite, _, _ = findMin table

            if composite <= x then
                yield! sieve (wheel iterator) (enumerator, adjust x table)
            else
                if x = 13L then
                    yield! [2L, 0; 3L, 0; 5L, 0; 7L, 0; 11L, 0]

                yield x, n
                yield! sieve (wheel iterator) (insertPrime enumerator composite table)
        }

    sieve (13L, 1, 1L) (null, insert (11L * 11L, 0, 11L) (Heap(0L, 0, 0L)))


let mutable i = 0

let compare a b =
    i <- i + 1
    if a = b then
        true
    else
        printfn "%A %A %A" a b i
        false

Seq.forall2 compare (Seq.take 50000 (primes())) (Seq.take 50000 (primes2() |> Seq.map fst))
|> printfn "%A"

primes2()
|> Seq.map fst
|> Seq.take 10
|> Seq.toArray
|> printfn "%A"

primes2()
|> Seq.map fst
|> Seq.skip 999999
|> Seq.take 10
|> Seq.toArray
|> printfn "%A"

System.Console.ReadLine() |> ignore

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...