Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
297 views
in Technique[技术] by (71.8m points)

atomic - Atomicity in C++ : Myth or Reality

I have been reading an article about Lockless Programming in MSDN. It says :

On all modern processors, you can assume that reads and writes of naturally aligned native types are atomic. As long as the memory bus is at least as wide as the type being read or written, the CPU reads and writes these types in a single bus transaction, making it impossible for other threads to see them in a half-completed state.

And it gives some examples:

// This write is not atomic because it is not natively aligned.
DWORD* pData = (DWORD*)(pChar + 1);
*pData = 0;

// This is not atomic because it is three separate operations.
++g_globalCounter;

// This write is atomic.
g_alignedGlobal = 0;

// This read is atomic.
DWORD local = g_alignedGlobal;

I read lots of answers and comments saying, nothing is guaranteed to be atomic in C++ and it is not even mentioned in standarts, in SO and now I am a bit confused. Am I misinterpreting the article? Or does the article writer talk about things that are non-standart and specific to MSVC++ compiler?

So according to the article the below assignments must be atomic, right?

struct Data
{
    char ID;
    char pad1[3];
    short Number;
    char pad2[2];
    char Name[5];
    char pad3[3];
    int Number2;
    double Value;
} DataVal;

DataVal.ID = 0;
DataVal.Number = 1000;
DataVal.Number2 = 0xFFFFFF;
DataVal.Value = 1.2;

If it is true, does replacing Name[5] and pad3[3] with std::string Name; make any difference in memory-alignment ? Will the assignments to Number2 and Value variables be still atomic?

Can someone please explain?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This recommendation is architecture-specific. It is true for x86 & x86_64 (in a low-level programming). You should also check that compiler don't reorder your code. You can use "compiler memory barrier" for that.

Low-level atomic read and writes for x86 is described in Intel Reference manuals "The Intel? 64 and IA-32 Architectures Software Developer’s Manual" Volume 3A ( http://www.intel.com/Assets/PDF/manual/253668.pdf) , section 8.1.1

8.1.1 Guaranteed Atomic Operations

The Intel486 processor (and newer processors since) guarantees that the following basic memory operations will always be carried out atomically:

  • Reading or writing a byte
  • Reading or writing a word aligned on a 16-bit boundary
  • Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following additional memory operations will always be carried out atomically:

  • Reading or writing a quadword aligned on a 64-bit boundary
  • 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following additional memory operation will always be carried out atomically:

  • Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache line

This document also have more description of atomically for newer processors like Core2. Not all unaligned operations will be atomic.

Other intel manual recommends this white paper:

http://software.intel.com/en-us/articles/developing-multithreaded-applications-a-platform-consistent-approach/


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...