Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
252 views
in Technique[技术] by (71.8m points)

r - Faster weighted sampling without replacement

This question led to a new R package: wrswoR

R's default sampling without replacement using sample.int seems to require quadratic run time, e.g. when using weights drawn from a uniform distribution. This is slow for large sample sizes. Does anybody know a faster implementation that would be usable from within R? Two options are "rejection sampling with replacement" (see this question on stats.sx) and the algorithm by Wong and Easton (1980) (with a Python implementation in a StackOverflow answer).

Thanks to Ben Bolker for hinting at the C function that is called internally when sample.int is called with replace=F and non-uniform weights: ProbSampleNoReplace. Indeed, the code shows two nested for loops (line 420 ff of random.c).

Here's the code to analyze the run time empirically:

library(plyr)

sample.int.test <- function(n, p) {
    sample.int(2 * n, n, replace=F, prob=p); NULL }

times <- ldply(
  1:7,
  function(i) {
    n <- 1024 * (2 ** i)
    p <- runif(2 * n)
    data.frame(
      n=n,
      user=system.time(sample.int.test(n, p), gcFirst=T)['user.self'])
  },
  .progress='text'
)

times

library(ggplot2)
ggplot(times, aes(x=n, y=user/n)) + geom_point() + scale_x_log10() +
  ylab('Time per unit (s)')

# Output:
       n   user
1   2048  0.008
2   4096  0.028
3   8192  0.100
4  16384  0.408
5  32768  1.645
6  65536  6.604
7 131072 26.558

Plot

EDIT: Thanks to Arun for pointing out that unweighted sampling doesn't seem to have this performance penalty.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Update:

An Rcpp implementation of Efraimidis & Spirakis algorithm (thanks to @Hemmo, @Dinrem, @krlmlr and @rtlgrmpf):

library(inline)
library(Rcpp)
src <- 
'
int num = as<int>(size), x = as<int>(n);
Rcpp::NumericVector vx = Rcpp::clone<Rcpp::NumericVector>(x);
Rcpp::NumericVector pr = Rcpp::clone<Rcpp::NumericVector>(prob);
Rcpp::NumericVector rnd = rexp(x) / pr;
for(int i= 0; i<vx.size(); ++i) vx[i] = i;
std::partial_sort(vx.begin(), vx.begin() + num, vx.end(), Comp(rnd));
vx = vx[seq(0, num - 1)] + 1;
return vx;
'
incl <- 
'
struct Comp{
  Comp(const Rcpp::NumericVector& v ) : _v(v) {}
  bool operator ()(int a, int b) { return _v[a] < _v[b]; }
  const Rcpp::NumericVector& _v;
};
'
funFast <- cxxfunction(signature(n = "Numeric", size = "integer", prob = "numeric"),
                       src, plugin = "Rcpp", include = incl)

# See the bottom of the answer for comparison
p <- c(995/1000, rep(1/1000, 5))
n <- 100000
system.time(print(table(replicate(funFast(6, 3, p), n = n)) / n))

      1       2       3       4       5       6 
1.00000 0.39996 0.39969 0.39973 0.40180 0.39882 
   user  system elapsed 
   3.93    0.00    3.96 
# In case of:
# Rcpp::IntegerVector vx = Rcpp::clone<Rcpp::IntegerVector>(x);
# i.e. instead of NumericVector
      1       2       3       4       5       6 
1.00000 0.40150 0.39888 0.39925 0.40057 0.39980 
   user  system elapsed 
   1.93    0.00    2.03 

Old version:

Let us try a few possible approaches:

Simple rejection sampling with replacement. This a far more simple function than sample.int.rej offered by @krlmlr, i.e. sample size is always equal to n. As we will see, it is still really fast assuming uniform distribution for weights, but extremely slow in another situation.

fastSampleReject <- function(all, n, w){
  out <- numeric(0)
  while(length(out) < n)
    out <- unique(c(out, sample(all, n, replace = TRUE, prob = w)))
  out[1:n]
}

The algorithm by Wong and Easton (1980). Here is an implementation of this Python version. It is stable and I might be missing something, but it is much slower compared to other functions.

fastSample1980 <- function(all, n, w){
  tws <- w
  for(i in (length(tws) - 1):0)
    tws[1 + i] <- sum(tws[1 + i], tws[1 + 2 * i + 1], 
                      tws[1 + 2 * i + 2], na.rm = TRUE)      
  out <- numeric(n)
  for(i in 1:n){
    gas <- tws[1] * runif(1)
    k <- 0        
    while(gas > w[1 + k]){
      gas <- gas - w[1 + k]
      k <- 2 * k + 1
      if(gas > tws[1 + k]){
        gas <- gas - tws[1 + k]
        k <- k + 1
      }
    }
    wgh <- w[1 + k]
    out[i] <- all[1 + k]        
    w[1 + k] <- 0
    while(1 + k >= 1){
      tws[1 + k] <- tws[1 + k] - wgh
      k <- floor((k - 1) / 2)
    }
  }
  out
}

Rcpp implementation of the algorithm by Wong and Easton. Possibly it can be optimized even more since this is my first usable Rcpp function, but anyway it works well.

library(inline)
library(Rcpp)

src <-
'
Rcpp::NumericVector weights = Rcpp::clone<Rcpp::NumericVector>(w);
Rcpp::NumericVector tws = Rcpp::clone<Rcpp::NumericVector>(w);
Rcpp::NumericVector x = Rcpp::NumericVector(all);
int k, num = as<int>(n);
Rcpp::NumericVector out(num);
double gas, wgh;

if((weights.size() - 1) % 2 == 0){
  tws[((weights.size()-1)/2)] += tws[weights.size()-1] + tws[weights.size()-2];
}
else
{
  tws[floor((weights.size() - 1)/2)] += tws[weights.size() - 1];
}

for (int i = (floor((weights.size() - 1)/2) - 1); i >= 0; i--){
  tws[i] += (tws[2 * i + 1]) + (tws[2 * i + 2]);
}
for(int i = 0; i < num; i++){
  gas = as<double>(runif(1)) * tws[0];
  k = 0;
  while(gas > weights[k]){
    gas -= weights[k];
    k = 2 * k + 1;
    if(gas > tws[k]){
      gas -= tws[k];
      k += 1;
    }
  }
  wgh = weights[k];
  out[i] = x[k];
  weights[k] = 0;
  while(k > 0){
    tws[k] -= wgh;
    k = floor((k - 1) / 2);
  }
  tws[0] -= wgh;
}
return out;
'

fun <- cxxfunction(signature(all = "numeric", n = "integer", w = "numeric"),
                   src, plugin = "Rcpp")

Now some results:

times1 <- ldply(
  1:6,
  function(i) {
    n <- 1024 * (2 ** i)
    p <- runif(2 * n) # Uniform distribution
    p <- p/sum(p)
    data.frame(
      n=n,
      user=c(system.time(sample.int.test(n, p), gcFirst=T)['user.self'],
             system.time(weighted_Random_Sample(1:(2*n), p, n), gcFirst=T)['user.self'],
             system.time(fun(1:(2*n), n, p), gcFirst=T)['user.self'],
             system.time(sample.int.rej(2*n, n, p), gcFirst=T)['user.self'],
             system.time(fastSampleReject(1:(2*n), n, p), gcFirst=T)['user.self'],
             system.time(fastSample1980(1:(2*n), n, p), gcFirst=T)['user.self']),
      id=c("Base", "Reservoir", "Rcpp", "Rejection", "Rejection simple", "1980"))
  },
  .progress='text'
)


times2 <- ldply(
  1:6,
  function(i) {
    n <- 1024 * (2 ** i)
    p <- runif(2 * n - 1)
    p <- p/sum(p) 
    p <- c(0.999, 0.001 * p) # Special case
    data.frame(
      n=n,
      user=c(system.time(sample.int.test(n, p), gcFirst=T)['user.self'],
             system.time(weighted_Random_Sample(1:(2*n), p, n), gcFirst=T)['user.self'],
             system.time(fun(1:(2*n), n, p), gcFirst=T)['user.self'],
             system.time(sample.int.rej(2*n, n, p), gcFirst=T)['user.self'],
             system.time(fastSampleReject(1:(2*n), n, p), gcFirst=T)['user.self'],
             system.time(fastSample1980(1:(2*n), n, p), gcFirst=T)['user.self']),
      id=c("Base", "Reservoir", "Rcpp", "Rejection", "Rejection simple", "1980"))
  },
  .progress='text'
)

enter image description here

enter image description here

arrange(times1, id)
       n  user               id
1   2048  0.53             1980
2   4096  0.94             1980
3   8192  2.00             1980
4  16384  4.32             1980
5  32768  9.10             1980
6  65536 21.32             1980
7   2048  0.02             Base
8   4096  0.05             Base
9   8192  0.18             Base
10 16384  0.75             Base
11 32768  2.99             Base
12 65536 12.23             Base
13  2048  0.00             Rcpp
14  4096  0.01             Rcpp
15  8192  0.03             Rcpp
16 16384  0.07             Rcpp
17 32768  0.14             Rcpp
18 65536  0.31             Rcpp
19  2048  0.00        Rejection
20  4096  0.00        Rejection
21  8192  0.00        Rejection
22 16384  0.02        Rejection
23 32768  0.02        Rejection
24 65536  0.03        Rejection
25  2048  0.00 Rejection simple
26  4096  0.01 Rejection simple
27  8192  0.00 Rejection simple
28 16384  0.01 Rejection simple
29 32768  0.00 Rejection simple
30 65536  0.05 Rejection simple
31  2048  0.00        Reservoir
32  4096  0.00        Reservoir
33  8192  0.00        Reservoir
34 16384  0.02        Reservoir
35 32768  0.03        Reservoir
36 65536  0.05        Reservoir

arrange(times2, id)
       n  user               id
1   2048  0.43             1980
2   4096  0.93             1980
3   8192  2.00             1980
4  16384  4.36             1980
5  32768  9.08             1980
6  65536 19.34             1980
7   2048  0.01             Base
8   4096  0.04             Base
9   8192  0.18             Base
10 16384  0.75             Base
11 32768  3.11             Base
12 65536 12.04             Base
13  2048  0.01             Rcpp
14  4096  0.02             Rcpp
15  8192  0.03             Rcpp
16 16384  0.08             Rcpp
17 32768  0.15             Rcpp
18 65536  0.33             Rcpp
19  2048  0.00        Rejection
20  4096  0.00        Rejection
21  8192  0.02        Rejection
22 16384  0.02        Rejection
23 32768  0.05        Rejection
24 65536  0.08        Rejection
25  2048  1.43 Rejection simple
26  4096  2.87 Rejection simple
27  8192  6.17 Rejection simple
28 16384 13.68 Rejection simple
29 32768 29.74 Rejection simple
30 65536 73.32 Rejection simple
31  2048  0.00        Reservoir
32  4096  0.00        Reservoir
33  8192  0.02        Reservoir
34 16384  0.02        Reservoir
35 32768  0.02        Reservoir
36 65536  0.04        Reservoir

Obviously we can reject function 1980 because it is slower than Base in both cases. Rejection simple gets into trouble too when there is a single probability 0.999 in the second case.

So there remains Rejection, Rcpp, Reservoir. The last step is checking whether the values themselves are correct. To be sure about them, we will be using sample as a benchmark (also to eliminate the confusion about probabilities which do not have to coincide with p because of sampling without replacement).

p <- c(995/1000, rep(1/1000, 5))
n <- 100000

system.time(print(table(replicate(sample(1:6, 3, repl = FALSE, prob = p), n = n))/n))
      1       2       3       4       5       6 
1.00000 0.39992 0.39886 0.40088 0.39711 0.40323  # Benchmark
   user  system elapsed 
   1.90    0.00    2.03 

system.time(print(table(replicate(sample.int.rej(2*3, 3, p), n = n))/n))
      1       2       3       4       5       6 
1.00000 0.40007 0.40099 0.39962 0.40153 0.39779 
   user  system elapsed 
  76.02    0.03   77.49 # Slow

system.time(print(table(replicate(weighted_Random_Sample(1:6, p, 3), n = n))/n))
      1       2       3       4       5       6 
1.00000 0.49535 0.41484 0.36432 0.36338 0.36211  # Incorrect
   user  system elapsed 
   3.64    0.01    3.67 

system.time(print(table(replicate(fun(1:6, 3, p), n = n))/n))
      1       2       3       4       5       6 
1.00000 0.39876 0.40031 0.40219 0.40039 0.39835 
   user  system elapsed 
   4.41    0.02    4.47 

Notice a few things here. For some reason weighted_Random_Sample returns incorrect values (I have not looked into it at all, but it works correct assuming uniform distribution). sample.int.rej is very slow in repeated sampling.

In conclusion, it seems that Rcpp is the optimal choice in case of repeated sampling while sample.int.rej is a bit faster otherwise and also easier to use.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

1.4m articles

1.4m replys

5 comments

57.0k users

...