Your code ignores the benefits of Java?5 almost completely. When you update it, you’ll get
for(MethodNode mn: cn.methods) {
if(!mn.name.equals("main")) continue;
Analyzer<BasicValue> analyzer = new Analyzer<>(new BasicInterpreter());
analyzer.analyze(cn.name, mn);
int i = -1;
for (Frame<BasicValue> frame: analyzer.getFrames()) {
i++;
if(frame == null) continue;
int opcode = mn.instructions.get(i).getOpcode();
if(opcode != Opcodes.ILOAD) continue;
BasicValue stackValue = frame.getStack(0);
System.out.print(stackValue + "|" + frame.getStack(1));
System.out.print(" - " + opcode + "
");
}
}
and you can see immediately that what you get is a BasicValue
, which is suitable for verifying code or calculating stackmap frames, but not to get the actual values.
It’s a property of the interpreter, here BasicInterpreter
, to maintain only BasicValue
s (hence the name). An alternative is the SourceInterpreter
which allows you to track from which instructions a value may originate, which would be the istore_0
in your case, but this still doesn’t give you the actual value.
So if you want to get the actual value (if predictable), you need your own interpreter. A rather simple one, only tracking values which truly originate from pushing a constant would be:
import static org.objectweb.asm.Opcodes.*;
import java.util.List;
import java.util.Objects;
import org.objectweb.asm.Type;
import org.objectweb.asm.tree.*;
import org.objectweb.asm.tree.analysis.*;
public class ConstantTracker extends Interpreter<ConstantTracker.ConstantValue> {
static final ConstantValue NULL = new ConstantValue(BasicValue.REFERENCE_VALUE, null);
public static final class ConstantValue implements Value {
final Object value; // null if unknown or NULL
final BasicValue type;
ConstantValue(BasicValue type, Object value) {
this.value = value;
this.type = Objects.requireNonNull(type);
}
@Override public int getSize() { return type.getSize(); }
@Override public String toString() {
Type t = type.getType();
if(t == null) return "uninitialized";
String typeName = type==BasicValue.REFERENCE_VALUE? "a reference type": t.getClassName();
return this == NULL? "null":
value == null? "unknown value of "+typeName: value+" ("+typeName+")";
}
@Override
public boolean equals(Object obj) {
if(this == obj) return true;
if(this == NULL || obj == NULL || !(obj instanceof ConstantValue))
return false;
ConstantValue that = (ConstantValue)obj;
return Objects.equals(this.value, that.value)
&& Objects.equals(this.type, that.type);
}
@Override
public int hashCode() {
if(this == NULL) return ~0;
return (value==null? 7: value.hashCode())+type.hashCode()*31;
}
}
BasicInterpreter basic = new BasicInterpreter(ASM5) {
@Override public BasicValue newValue(Type type) {
return type!=null && (type.getSort()==Type.OBJECT || type.getSort()==Type.ARRAY)?
new BasicValue(type): super.newValue(type);
}
@Override public BasicValue merge(BasicValue a, BasicValue b) {
if(a.equals(b)) return a;
if(a.isReference() && b.isReference())
// this is the place to consider the actual type hierarchy if you want
return BasicValue.REFERENCE_VALUE;
return BasicValue.UNINITIALIZED_VALUE;
}
};
public ConstantTracker() {
super(ASM5);
}
@Override
public ConstantValue newOperation(AbstractInsnNode insn) throws AnalyzerException {
switch(insn.getOpcode()) {
case ACONST_NULL: return NULL;
case ICONST_M1: case ICONST_0: case ICONST_1: case ICONST_2:
case ICONST_3: case ICONST_4: case ICONST_5:
return new ConstantValue(BasicValue.INT_VALUE, insn.getOpcode()-ICONST_0);
case LCONST_0: case LCONST_1:
return new ConstantValue(BasicValue.LONG_VALUE, (long)(insn.getOpcode()-LCONST_0));
case FCONST_0: case FCONST_1: case FCONST_2:
return new ConstantValue(BasicValue.FLOAT_VALUE, (float)(insn.getOpcode()-FCONST_0));
case DCONST_0: case DCONST_1:
return new ConstantValue(BasicValue.DOUBLE_VALUE, (double)(insn.getOpcode()-DCONST_0));
case BIPUSH: case SIPUSH:
return new ConstantValue(BasicValue.INT_VALUE, ((IntInsnNode)insn).operand);
case LDC:
return new ConstantValue(basic.newOperation(insn), ((LdcInsnNode)insn).cst);
default:
BasicValue v = basic.newOperation(insn);
return v == null? null: new ConstantValue(v, null);
}
}
@Override
public ConstantValue copyOperation(AbstractInsnNode insn, ConstantValue value) {
return value;
}
@Override
public ConstantValue newValue(Type type) {
BasicValue v = basic.newValue(type);
return v == null? null: new ConstantValue(v, null);
}
@Override
public ConstantValue unaryOperation(AbstractInsnNode insn, ConstantValue value) throws AnalyzerException {
BasicValue v = basic.unaryOperation(insn, value.type);
return v == null? null: new ConstantValue(v, insn.getOpcode()==CHECKCAST? value.value: null);
}
@Override
public ConstantValue binaryOperation(AbstractInsnNode insn, ConstantValue a, ConstantValue b) throws AnalyzerException {
BasicValue v = basic.binaryOperation(insn, a.type, b.type);
return v == null? null: new ConstantValue(v, null);
}
@Override
public ConstantValue ternaryOperation(AbstractInsnNode insn, ConstantValue a, ConstantValue b, ConstantValue c) {
return null;
}
@Override
public ConstantValue naryOperation(AbstractInsnNode insn, List<? extends ConstantValue> values) throws AnalyzerException {
List<BasicValue> unusedByBasicInterpreter = null;
BasicValue v = basic.naryOperation(insn, unusedByBasicInterpreter);
return v == null? null: new ConstantValue(v, null);
}
@Override
public void returnOperation(AbstractInsnNode insn, ConstantValue value, ConstantValue expected) {}
@Override
public ConstantValue merge(ConstantValue a, ConstantValue b) {
if(a == b) return a;
BasicValue t = basic.merge(a.type, b.type);
return t.equals(a.type) && (a.value==null&&a!=NULL || a.value.equals(b.value))? a:
t.equals(b.type) && b.value==null&&b!=NULL? b: new ConstantValue(t, null);
}
}
then, you may use it like
private static void analyze() throws IOException, AnalyzerException {
ClassReader cr = new ClassReader(new FileInputStream(new File("input.class")));
ClassNode cn = new ClassNode(Opcodes.ASM5);
cr.accept(cn, 0);
for(MethodNode mn: cn.methods) {
if(!mn.name.equals("main")) continue;
Analyzer<ConstantTracker.ConstantValue> analyzer
= new Analyzer<>(new ConstantTracker());
analyzer.analyze(cn.name, mn);
int i = -1;
for(Frame<ConstantTracker.ConstantValue> frame: analyzer.getFrames()) {
i++;
if(frame == null) continue;
AbstractInsnNode n = mn.instructions.get(i);
if(n.getOpcode() != Opcodes.ILOAD) continue;
VarInsnNode vn = (VarInsnNode)n;
System.out.println("accessing variable # "+vn.var);
ConstantTracker.ConstantValue var = frame.getLocal(vn.var);
System.out.println("contains "+var);
}
}
}
This works with all load instructions not only ILOAD
, i.e. ALOAD
, LLOAD
, FLOAD
, and DLOAD
Of course, the interpreter has much room for improvements, e.g. for tracking trivial transformations like casts of int
constants to short
or byte
or doing simple math, but I think the picture is clearer now and it depends on your actual use case, how much you want to track or interpret.