Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
636 views
in Technique[技术] by (71.8m points)

numpy - Efficient outer product in python

Outer product in python seems quite slow when we have to deal with vectors of dimension of order 10k. Could someone please give me some idea how could I speed up this operation in python?

Code is as follows:

 In [8]: a.shape
 Out[8]: (128,)

 In [9]: b.shape
 Out[9]: (32000,)

 In [10]: %timeit np.outer(b,a)
 100 loops, best of 3: 15.4 ms per loop

Since I have to do this operation several times, my code is getting slower.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

It doesn't really get any faster than that, these are your options:

numpy.outer

>>> %timeit np.outer(a,b)
100 loops, best of 3: 9.79 ms per loop

numpy.einsum

>>> %timeit np.einsum('i,j->ij', a, b)
100 loops, best of 3: 16.6 ms per loop

numba

from numba.decorators import autojit

@autojit
def outer_numba(a, b):
    m = a.shape[0]
    n = b.shape[0]
    result = np.empty((m, n), dtype=np.float)
    for i in range(m):
        for j in range(n):
            result[i, j] = a[i]*b[j]
    return result

>>> %timeit outer_numba(a,b)
100 loops, best of 3: 9.77 ms per loop

parakeet

from parakeet import jit

@jit
def outer_parakeet(a, b):
   ... same as numba

>>> %timeit outer_parakeet(a, b)
100 loops, best of 3: 11.6 ms per loop

cython

cimport numpy as np
import numpy as np
cimport cython
ctypedef np.float64_t DTYPE_t

@cython.boundscheck(False)
@cython.wraparound(False)
def outer_cython(np.ndarray[DTYPE_t, ndim=1] a, np.ndarray[DTYPE_t, ndim=1] b):
    cdef int m = a.shape[0]
    cdef int n = b.shape[0]
    cdef np.ndarray[DTYPE_t, ndim=2] result = np.empty((m, n), dtype=np.float64)
    for i in range(m):
        for j in range(n):
            result[i, j] = a[i]*b[j]
    return result

>>> %timeit outer_cython(a, b)
100 loops, best of 3: 10.1 ms per loop

theano

from theano import tensor as T
from theano import function

x = T.vector()
y = T.vector()

outer_theano = function([x, y], T.outer(x, y))

>>> %timeit outer_theano(a, b)
100 loops, best of 3: 17.4 ms per loop

pypy

# Same code as the `outer_numba` function
>>> timeit.timeit("outer_pypy(a,b)", number=100, setup="import numpy as np;a = np.random.rand(128,);b = np.random.rand(32000,);from test import outer_pypy;outer_pypy(a,b)")*1000 / 100.0
16.36 # ms

Conclusions:

╔═══════════╦═══════════╦═════════╗
║  method   ║ time(ms)* ║ version ║
╠═══════════╬═══════════╬═════════╣
║ numba     ║ 9.77      ║ 0.16.0  ║
║ np.outer  ║ 9.79      ║ 1.9.1   ║
║ cython    ║ 10.1      ║ 0.21.2  ║
║ parakeet  ║ 11.6      ║ 0.23.2  ║
║ pypy      ║ 16.36     ║ 2.4.0   ║
║ np.einsum ║ 16.6      ║ 1.9.1   ║
║ theano    ║ 17.4      ║ 0.6.0   ║
╚═══════════╩═══════════╩═════════╝
* less time = faster

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

1.4m articles

1.4m replys

5 comments

57.0k users

...