You could just vectorize the function and then apply it directly to a Numpy array each time you need it:
import numpy as np
def f(x):
return x * x + 3 * x - 2 if x > 0 else x * 5 + 8
f = np.vectorize(f) # or use a different name if you want to keep the original f
result_array = f(A) # if A is your Numpy array
It's probably better to specify an explicit output type directly when vectorizing:
f = np.vectorize(f, otypes=[np.float])
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…