This is what I normally use to convert images stored in database to OpenCV images in Python.
import numpy as np
import cv2
from cv2 import cv
# Load image as string from file/database
fd = open('foo.jpg')
img_str = fd.read()
fd.close()
# CV2
nparr = np.fromstring(img_str, np.uint8)
img_np = cv2.imdecode(nparr, cv2.CV_LOAD_IMAGE_COLOR) # cv2.IMREAD_COLOR in OpenCV 3.1
#?CV
img_ipl = cv.CreateImageHeader((img_np.shape[1], img_np.shape[0]), cv.IPL_DEPTH_8U, 3)
cv.SetData(img_ipl, img_np.tostring(), img_np.dtype.itemsize * 3 * img_np.shape[1])
# check types
print type(img_str)
print type(img_np)
print type(img_ipl)
I have added the conversion from numpy.ndarray
to cv2.cv.iplimage
, so the script above will print:
<type 'str'>
<type 'numpy.ndarray'>
<type 'cv2.cv.iplimage'>
EDIT:
As of latest numpy 1.18.5 +
, the np.fromstring
raise a warning, hence np.frombuffer
shall be used in that place.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…