Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
269 views
in Technique[技术] by (71.8m points)

c - Time complexity of a recursive algorithm

How can I calculate the time complexity of a recursive algorithm?

int pow1(int x,int n) {
    if(n==0){
        return 1;
    }
    else{
        return x * pow1(x, n-1);
    }
}

int pow2(int x,int n) {
    if(n==0){
        return 1;
    }
    else if(n&1){
        int p = pow2(x, (n-1)/2)
        return x * p * p;
    }
    else {
        int p = pow2(x, n/2)
        return p * p;
    }
}
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Analyzing recursive functions (or even evaluating them) is a nontrivial task. A (in my opinion) good introduction can be found in Don Knuths Concrete Mathematics.

However, let's analyse these examples now:

We define a function that gives us the time needed by a function. Let's say that t(n) denotes the time needed by pow(x,n), i.e. a function of n.

Then we can conclude, that t(0)=c, because if we call pow(x,0), we have to check whether (n==0), and then return 1, which can be done in constant time (hence the constant c).

Now we consider the other case: n>0. Here we obtain t(n) = d + t(n-1). That's because we have again to check n==1, compute pow(x, n-1, hence (t(n-1)), and multiply the result by x. Checking and multiplying can be done in constant time (constant d), the recursive calculation of pow needs t(n-1).

Now we can "expand" the term t(n):

t(n) =
d + t(n-1) = 
d + (d + t(n-2)) = 
d + d + t(n-2) = 
d + d + d + t(n-3) =
... =
d + d + d + ... + t(1) =
d + d + d + ... + c

So, how long does it take until we reach t(1)? Since we start at t(n) and we subtract 1 in each step, it takes n-1 steps to reach t(n-(n-1)) = t(1). That, on the other hands, means, that we get n-1 times the constant d, and t(1) is evaluated to c.

So we obtain:

t(n) =
...
d + d + d + ... + c =
(n-1) * d + c

So we get that t(n)=(n-1) * d + c which is element of O(n).

pow2 can be done using Masters theorem. Since we can assume that time functions for algorithms are monotonically increasing. So now we have the time t(n) needed for the computation of pow2(x,n):

t(0) = c (since constant time needed for computation of pow(x,0))

for n>0 we get

        / t((n-1)/2) + d if n is odd  (d is constant cost)
t(n) = <
         t(n/2) + d     if n is even (d is constant cost)

The above can be "simplified" to:

t(n) = floor(t(n/2)) + d <= t(n/2) + d (since t is monotonically increasing)

So we obtain t(n) <= t(n/2) + d, which can be solved using the masters theorem to t(n) = O(log n) (see section Application to Popular Algorithms in the wikipedia link, example "Binary Search").


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...