Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.5k views
in Technique[技术] by (71.8m points)

apache spark - Pyspark: Pass multiple columns in UDF

I am writing a User Defined Function which will take all the columns except the first one in a dataframe and do sum (or any other operation). Now the dataframe can sometimes have 3 columns or 4 columns or more. It will vary.

I know I can hard code 4 column names as pass in the UDF but in this case it will vary so I would like to know how to get it done?

Here are two examples in the first one we have two columns to add and in the second one we have three columns to add.

enter image description here

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

If all columns you want to pass to UDF have the same data type you can use array as input parameter, for example:

>>> from pyspark.sql.types import IntegerType
>>> from pyspark.sql.functions import udf, array
>>> sum_cols = udf(lambda arr: sum(arr), IntegerType())
>>> spark.createDataFrame([(101, 1, 16)], ['ID', 'A', 'B']) 
...     .withColumn('Result', sum_cols(array('A', 'B'))).show()
+---+---+---+------+
| ID|  A|  B|Result|
+---+---+---+------+
|101|  1| 16|    17|
+---+---+---+------+

>>> spark.createDataFrame([(101, 1, 16, 8)], ['ID', 'A', 'B', 'C'])
...     .withColumn('Result', sum_cols(array('A', 'B', 'C'))).show()
+---+---+---+---+------+
| ID|  A|  B|  C|Result|
+---+---+---+---+------+
|101|  1| 16|  8|    25|
+---+---+---+---+------+

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...