Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
438 views
in Technique[技术] by (71.8m points)

regex - Why can regular expressions have an exponential running time?

It is possible to write a Regex which needs in some cases exponential running time. Such an example is (aa|aa)*. If there is an input of an odd number of as it needs exponential running time.

It is easy to test this. If the input contains only as and has length 51, the Regex needs some seconds to compute (on my machine). Instead if the input length is 52 its computing time is not noticeable (I tested this with the built-in Regex-parser of the JavaRE).

I have written a Regex-parser to find the reason for this behavior, but I didn't find it. My parser can build an AST or a NFA based on a Regex. After that it can translate the NFA to a DFA. To do this it uses the powerset construction algorithm.

When I parse the Rgex mentioned above, the parser creates a NFA with 7 states - after conversion there are only 3 states left in the DFA. The DFA represents the more sensible Regex (aa)*, which can be parsed very fast.

Thus, I don't understand why there are parsers which can be so slow. What is the reason for this? Do they not translate the NFA to a DFA? If yes, why not? And what's the technical reasons why they compute so slow?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Russ Cox has a very detailed article about why this is and the history of regexes (part 2, part 3).

Regular expression matching can be simple and fast, using finite automata-based techniques that have been known for decades. In contrast, Perl, PCRE, Python, Ruby, Java, and many other languages have regular expression implementations based on recursive backtracking that are simple but can be excruciatingly slow. With the exception of backreferences, the features provided by the slow backtracking implementations can be provided by the automata-based implementations at dramatically faster, more consistent speeds.

Largely, it comes down to proliferation of non-regular features in "regular" expressions such as backreferences, and the (continued) ignorance of most programmers that there are better alternatives for regexes that do not contain such features (which is many of them).

While writing the text editor sam in the early 1980s, Rob Pike wrote a new regular expression implementation, which Dave Presotto extracted into a library that appeared in the Eighth Edition. Pike's implementation incorporated submatch tracking into an efficient NFA simulation but, like the rest of the Eighth Edition source, was not widely distributed. Pike himself did not realize that his technique was anything new. Henry Spencer reimplemented the Eighth Edition library interface from scratch, but using backtracking, and released his implementation into the public domain. It became very widely used, eventually serving as the basis for the slow regular expression implementations mentioned earlier: Perl, PCRE, Python, and so on. (In his defense, Spencer knew the routines could be slow, and he didn't know that a more efficient algorithm existed. He even warned in the documentation, “Many users have found the speed perfectly adequate, although replacing the insides of egrep with this code would be a mistake.”) Pike's regular expression implementation, extended to support Unicode, was made freely available with sam in late 1992, but the particularly efficient regular expression search algorithm went unnoticed.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...