Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
430 views
in Technique[技术] by (71.8m points)

python - pandas to_datetime parsing wrong year

I'm coming across something that is almost certainly a stupid mistake on my part, but I can't seem to figure out what's going on.

Essentially, I have a series of dates as strings in the format "%d-%b-%y", such as 26-Sep-05. When I go to convert them to datetime, the year is sometimes correct, but sometimes it is not.

E.g.:

dates = ['26-Sep-05', '26-Sep-05', '15-Jun-70', '5-Dec-94', '9-Jan-61', '8-Feb-55']

pd.to_datetime(dates, format="%d-%b-%y")
DatetimeIndex(['2005-09-26', '2005-09-26', '1970-06-15', '1994-12-05',
               '2061-01-09', '2055-02-08'],
              dtype='datetime64[ns]', freq=None)

The last two entries, which get returned as 2061 and 2055 for the years, are wrong. But this works fine for the 15-Jun-70 entry. What's going on here?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

That seems to be the behavior of the Python library datetime, I did a test to see where the cutoff is 68 - 69:

datetime.datetime.strptime('31-Dec-68', '%d-%b-%y').date()
>>> datetime.date(2068, 12, 31)

datetime.datetime.strptime('1-Jan-69', '%d-%b-%y').date()
>>> datetime.date(1969, 1, 1)

Two digits year ambiguity

So it seems that anything with the %y year below 69 will be attributed a century of 2000, and 69 upwards get 1900

The %y two digits can only go from 00 to 99 which is going to be ambiguous if we start crossing centuries.

If there is no overlap, you could manually process it and annotate the century (kill the ambiguity)

I suggest you process your data manually and specify the century, e.g. you can decide that anything in your data that has the year between 17 and 68 is attributed to 1917 - 1968 (instead of 2017 - 2068).

If you have overlap then you can't process with insufficient year information, unless e.g. you have some ordered data and a reference

If you have overlap e.g. you have data from both 2016 and 1916 and both were logged as '16', that's ambiguous and there isn't sufficient information to parse this, unless the data is ordered by date in which case you can use heuristics to switch the century as you parse it.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...