Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
552 views
in Technique[技术] by (71.8m points)

matlab - Align already captured rgb and depth images

I am trying to allign two images - one rgb and another depth using MATLAB. Please note that I have checked several places for this - like here , here which requires a kinect device, and here here which says that camera parameters are required for calibration. I was also suggested to use EPIPOLAR GEOMETRY to match the two images though I do not know how. The dataset I am referring to is given in rgb-d-t face dataset. One such example is illustrated below :

image

The ground truth which basically means the bounding boxes which specify the face region of interest are already provided and I use them to crop the face regions only. The matlab code is illustrated below :

I = imread('1.jpg');
I1 = imcrop(I,[218,198,158,122]);
I2 = imcrop(I,[243,209,140,108]);
figure, subplot(1,2,1),imshow(I1);
subplot(1,2,2),imshow(I2);

The two cropped images rgb and depth are shown below : cropped_images


Is there any way by which we can register/allign the images. I took the hint from here where basic sobel operator has been used on both the rgb and depth images to generate an edge map and then keypoints will need to be generated for matching purposes. The edge maps for both the images are generated here.

edge_map.

However they are so noisy that I do not think we will be able to do keypoint matching for this images.

Can anybody suggest some algorithms in matlab to do the same ?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

prologue

This answer is based on mine previous answer:

I manually crop your input image so I separate colors and depth images (as my program need them separated. This could cause minor offset change by few pixels. Also as I do not have the depths (depth image is 8bit only due to grayscale RGB) then the depth accuracy I work with is very poor see:

depth

So my results are affected by all this negatively. Anyway here is what you need to do:

  1. determine FOV for both images

    So find some measurable feature visible on both images. The bigger in size the more accurate the result. For example I choose these:

    FOV

  2. form a point cloud or mesh

    I use depth image as reference so my point cloud is in its FOV. As I do not have the distances but 8bit values instead I converted that to some distance by multiplying by constant. So I scan whole depth image and for every pixel I create point in my point cloud array. Then convert the dept pixel coordinate to color image FOV and copy its color too. something like this (in C++):

    picture rgb,zed; // your input images
    struct pnt3d { float pos[3]; DWORD rgb; pnt3d(){}; pnt3d(pnt3d& a){ *this=a; }; ~pnt3d(){}; pnt3d* operator = (const pnt3d *a) { *this=*a; return this; }; /*pnt3d* operator = (const pnt3d &a) { ...copy... return this; };*/ };
    pnt3d **xyz=NULL; int xs,ys,ofsx=0,ofsy=0;
    
    void copy_images()
        {
        int x,y,x0,y0;
        float xx,yy;
        pnt3d *p;
        for (y=0;y<ys;y++)
         for (x=0;x<xs;x++)
            {
            p=&xyz[y][x];
            // copy point from depth image
            p->pos[0]=2.000*((float(x)/float(xs))-0.5);
            p->pos[1]=2.000*((float(y)/float(ys))-0.5)*(float(ys)/float(xs));
            p->pos[2]=10.0*float(DWORD(zed.p[y][x].db[0]))/255.0;
            // convert dept image x,y to color image space (FOV correction)
            xx=float(x)-(0.5*float(xs));
            yy=float(y)-(0.5*float(ys));
            xx*=98.0/108.0;
            yy*=106.0/119.0;
            xx+=0.5*float(rgb.xs);
            yy+=0.5*float(rgb.ys);
            x0=xx; x0+=ofsx;
            y0=yy; y0+=ofsy;
            // copy color from rgb image if in range
            p->rgb=0x00000000; // black
            if ((x0>=0)&&(x0<rgb.xs))
             if ((y0>=0)&&(y0<rgb.ys))
              p->rgb=rgb2bgr(rgb.p[y0][x0].dd); // OpenGL has reverse RGBorder then my image
            }
        }
    

    where **xyz is my point cloud 2D array allocated t depth image resolution. The picture is my image class for DIP so here some relevant members:

    • xs,ys is the image resolution in pixels
    • p[ys][xs] is the image direct pixel access as union of DWORD dd; BYTE db[4]; so I can access color as single 32 bit variable or each color channel separately.
    • rgb2bgr(DWORD col) just reorder color channels from RGB to BGR.
  3. render it

    I use OpenGL for this so here the code:

        glBegin(GL_QUADS);
        for (int y0=0,y1=1;y1<ys;y0++,y1++)
        for (int x0=0,x1=1;x1<xs;x0++,x1++)
            {
            float z,z0,z1;
            z=xyz[y0][x0].pos[2]; z0=z; z1=z0;
            z=xyz[y0][x1].pos[2]; if (z0>z) z0=z; if (z1<z) z1=z;
            z=xyz[y1][x0].pos[2]; if (z0>z) z0=z; if (z1<z) z1=z;
            z=xyz[y1][x1].pos[2]; if (z0>z) z0=z; if (z1<z) z1=z;
            if (z0   <=0.01) continue;
            if (z1   >=3.90) continue;  // 3.972 pre vsetko nad .=3.95m a 4.000 ak nechyti vobec nic
            if (z1-z0>=0.10) continue;
            glColor4ubv((BYTE* )&xyz[y0][x0].rgb);
            glVertex3fv((float*)&xyz[y0][x0].pos);
            glColor4ubv((BYTE* )&xyz[y0][x1].rgb);
            glVertex3fv((float*)&xyz[y0][x1].pos);
            glColor4ubv((BYTE* )&xyz[y1][x1].rgb);
            glVertex3fv((float*)&xyz[y1][x1].pos);
            glColor4ubv((BYTE* )&xyz[y1][x0].rgb);
            glVertex3fv((float*)&xyz[y1][x0].pos);
            }
        glEnd();
    

    You need to add the OpenGL initialization and camera settings etc of coarse. Here the unaligned result:

    colors

  4. align it

    If you notice I added ofsx,ofsy variables to copy_images(). This is the offset between cameras. I change them on arrows keystrokes by 1 pixel and then call copy_images and render the result. This way I manually found the offset very quickly:

    align

    As you can see the offset is +17 pixels in x axis and +4 pixels in y axis. Here side view to better see the depths:

    side

Hope It helps a bit


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...