Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
330 views
in Technique[技术] by (71.8m points)

Python pandas Filtering out nan from a data selection of a column of strings

Without using groupby how would I filter out data without NaN?

Let say I have a matrix where customers will fill in 'N/A','n/a' or any of its variations and others leave it blank:

import pandas as pd
import numpy as np


df = pd.DataFrame({'movie': ['thg', 'thg', 'mol', 'mol', 'lob', 'lob'],
                  'rating': [3., 4., 5., np.nan, np.nan, np.nan],
                  'name': ['John', np.nan, 'N/A', 'Graham', np.nan, np.nan]})

nbs = df['name'].str.extract('^(N/A|NA|na|n/a)')
nms=df[(df['name'] != nbs) ]

output:

>>> nms
  movie    name  rating
0   thg    John       3
1   thg     NaN       4
3   mol  Graham     NaN
4   lob     NaN     NaN
5   lob     NaN     NaN

How would I filter out NaN values so I can get results to work with like this:

  movie    name  rating
0   thg    John       3
3   mol  Graham     NaN

I am guessing I need something like ~np.isnan but the tilda does not work with strings.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Just drop them:

nms.dropna(thresh=2)

this will drop all rows where there are at least two non-NaN.

Then you could then drop where name is NaN:

In [87]:

nms
Out[87]:
  movie    name  rating
0   thg    John       3
1   thg     NaN       4
3   mol  Graham     NaN
4   lob     NaN     NaN
5   lob     NaN     NaN

[5 rows x 3 columns]
In [89]:

nms = nms.dropna(thresh=2)
In [90]:

nms[nms.name.notnull()]
Out[90]:
  movie    name  rating
0   thg    John       3
3   mol  Graham     NaN

[2 rows x 3 columns]

EDIT

Actually looking at what you originally want you can do just this without the dropna call:

nms[nms.name.notnull()]

UPDATE

Looking at this question 3 years later, there is a mistake, firstly thresh arg looks for at least n non-NaN values so in fact the output should be:

In [4]:
nms.dropna(thresh=2)

Out[4]:
  movie    name  rating
0   thg    John     3.0
1   thg     NaN     4.0
3   mol  Graham     NaN

It's possible that I was either mistaken 3 years ago or that the version of pandas I was running had a bug, both scenarios are entirely possible.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...