Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
537 views
in Technique[技术] by (71.8m points)

signal processing - calculate exponential moving average in python

I have a range of dates and a measurement on each of those dates. I'd like to calculate an exponential moving average for each of the dates. Does anybody know how to do this?

I'm new to python. It doesn't appear that averages are built into the standard python library, which strikes me as a little odd. Maybe I'm not looking in the right place.

So, given the following code, how could I calculate the moving weighted average of IQ points for calendar dates?

from datetime import date
days = [date(2008,1,1), date(2008,1,2), date(2008,1,7)]
IQ = [110, 105, 90]

(there's probably a better way to structure the data, any advice would be appreciated)

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

EDIT: It seems that mov_average_expw() function from scikits.timeseries.lib.moving_funcs submodule from SciKits (add-on toolkits that complement SciPy) better suits the wording of your question.


To calculate an exponential smoothing of your data with a smoothing factor alpha (it is (1 - alpha) in Wikipedia's terms):

>>> alpha = 0.5
>>> assert 0 < alpha <= 1.0
>>> av = sum(alpha**n.days * iq 
...     for n, iq in map(lambda (day, iq), today=max(days): (today-day, iq), 
...         sorted(zip(days, IQ), key=lambda p: p[0], reverse=True)))
95.0

The above is not pretty, so let's refactor it a bit:

from collections import namedtuple
from operator    import itemgetter

def smooth(iq_data, alpha=1, today=None):
    """Perform exponential smoothing with factor `alpha`.

    Time period is a day.
    Each time period the value of `iq` drops `alpha` times.
    The most recent data is the most valuable one.
    """
    assert 0 < alpha <= 1

    if alpha == 1: # no smoothing
        return sum(map(itemgetter(1), iq_data))

    if today is None:
        today = max(map(itemgetter(0), iq_data))

    return sum(alpha**((today - date).days) * iq for date, iq in iq_data)

IQData = namedtuple("IQData", "date iq")

if __name__ == "__main__":
    from datetime import date

    days = [date(2008,1,1), date(2008,1,2), date(2008,1,7)]
    IQ = [110, 105, 90]
    iqdata = list(map(IQData, days, IQ))
    print("
".join(map(str, iqdata)))

    print(smooth(iqdata, alpha=0.5))

Example:

$ python26 smooth.py
IQData(date=datetime.date(2008, 1, 1), iq=110)
IQData(date=datetime.date(2008, 1, 2), iq=105)
IQData(date=datetime.date(2008, 1, 7), iq=90)
95.0

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...