Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
259 views
in Technique[技术] by (71.8m points)

python - Apache Spark -- Assign the result of UDF to multiple dataframe columns

I'm using pyspark, loading a large csv file into a dataframe with spark-csv, and as a pre-processing step I need to apply a variety of operations to the data available in one of the columns (that contains a json string). That will return X values, each of which needs to be stored in their own separate column.

That functionality will be implemented in a UDF. However, I am not sure how to return a list of values from that UDF and feed these into individual columns. Below is a simple example:

(...)
from pyspark.sql.functions import udf
def udf_test(n):
    return [n/2, n%2]

test_udf=udf(udf_test)


df.select('amount','trans_date').withColumn("test", test_udf("amount")).show(4)

That produces the following:

+------+----------+--------------------+
|amount|trans_date|                test|
+------+----------+--------------------+
|  28.0|2016-02-07|         [14.0, 0.0]|
| 31.01|2016-02-07|[15.5050001144409...|
| 13.41|2016-02-04|[6.70499992370605...|
| 307.7|2015-02-17|[153.850006103515...|
| 22.09|2016-02-05|[11.0450000762939...|
+------+----------+--------------------+
only showing top 5 rows

What would be the best way to store the two (in this example) values being returned by the udf on separate columns? Right now they are being typed as strings:

df.select('amount','trans_date').withColumn("test", test_udf("amount")).printSchema()

root
 |-- amount: float (nullable = true)
 |-- trans_date: string (nullable = true)
 |-- test: string (nullable = true)
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

It is not possible to create multiple top level columns from a single UDF call but you can create a new struct. It requires an UDF with specified returnType:

from pyspark.sql.functions import udf
from pyspark.sql.types import StructType, StructField, FloatType

schema = StructType([
    StructField("foo", FloatType(), False),
    StructField("bar", FloatType(), False)
])

def udf_test(n):
    return (n / 2, n % 2) if n and n != 0.0 else (float('nan'), float('nan'))

test_udf = udf(udf_test, schema)
df = sc.parallelize([(1, 2.0), (2, 3.0)]).toDF(["x", "y"])

foobars = df.select(test_udf("y").alias("foobar"))
foobars.printSchema()
## root
##  |-- foobar: struct (nullable = true)
##  |    |-- foo: float (nullable = false)
##  |    |-- bar: float (nullable = false)

You further flatten the schema with simple select:

foobars.select("foobar.foo", "foobar.bar").show()
## +---+---+
## |foo|bar|
## +---+---+
## |1.0|0.0|
## |1.5|1.0|
## +---+---+

See also Derive multiple columns from a single column in a Spark DataFrame


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...