Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
641 views
in Technique[技术] by (71.8m points)

python - tf.nn.conv2d vs tf.layers.conv2d

Is there any advantage in using tf.nn.* over tf.layers.*?

Most of the examples in the doc use tf.nn.conv2d, for instance, but it is not clear why they do so.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

As GBY mentioned, they use the same implementation.

There is a slight difference in the parameters.

For tf.nn.conv2d:

filter: A Tensor. Must have the same type as input. A 4-D tensor of shape [filter_height, filter_width, in_channels, out_channels]

For tf.layers.conv2d:

filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).

I would use tf.nn.conv2d when loading a pretrained model (example code: https://github.com/ry/tensorflow-vgg16), and tf.layers.conv2d for a model trained from scratch.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...