There may be a simpler way, but this is how you'd go about doing it, as far as I know:
import numpy as np
import tables
# Generate some data
x = np.random.random((100,100,100))
# Store "x" in a chunked array...
f = tables.open_file('test.hdf', 'w')
atom = tables.Atom.from_dtype(x.dtype)
ds = f.createCArray(f.root, 'somename', atom, x.shape)
ds[:] = x
f.close()
If you want to specify the compression to use, have a look at tables.Filters
. E.g.
import numpy as np
import tables
# Generate some data
x = np.random.random((100,100,100))
# Store "x" in a chunked array with level 5 BLOSC compression...
f = tables.open_file('test.hdf', 'w')
atom = tables.Atom.from_dtype(x.dtype)
filters = tables.Filters(complib='blosc', complevel=5)
ds = f.createCArray(f.root, 'somename', atom, x.shape, filters=filters)
ds[:] = x
f.close()
There's probably a simpler way for a lot of this... I haven't used pytables
for anything other than table-like data in a long while.
Note: with pytables 3.0, f.createCArray
was renamed to f.create_carray
. It can also accept the array directly, without specifying the atom
,
f.create_carray('/', 'somename', obj=x, filters=filters)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…