Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
658 views
in Technique[技术] by (71.8m points)

tensorflow - Checkpointing keras model: TypeError: can't pickle _thread.lock objects

It seems like the error has occurred in the past in different contexts here, but I'm not dumping the model directly -- I'm using the ModelCheckpoint callback. Any idea what could be going wrong?

Information:

  • Keras version 2.0.8
  • Tensorflow version 1.3.0
  • Python 3.6

Minimal example to reproduce the error:

from keras.layers import Input, Lambda, Dense
from keras.models import Model
from keras.callbacks import ModelCheckpoint
from keras.optimizers import Adam
import tensorflow as tf
import numpy as np

x = Input(shape=(30,3))
low = tf.constant(np.random.rand(30, 3).astype('float32'))
high = tf.constant(1 + np.random.rand(30, 3).astype('float32'))
clipped_out_position = Lambda(lambda x, low, high: tf.clip_by_value(x, low, high),
                                      arguments={'low': low, 'high': high})(x)

model = Model(inputs=x, outputs=[clipped_out_position])
optimizer = Adam(lr=.1)
model.compile(optimizer=optimizer, loss="mean_squared_error")
checkpoint = ModelCheckpoint("debug.hdf", monitor="val_loss", verbose=1, save_best_only=True, mode="min")
training_callbacks = [checkpoint]
model.fit(np.random.rand(100, 30, 3), [np.random.rand(100, 30, 3)], callbacks=training_callbacks, epochs=50, batch_size=10, validation_split=0.33)

Error output:

Train on 67 samples, validate on 33 samples
Epoch 1/50
10/67 [===>..........................] - ETA: 0s - loss: 0.1627Epoch 00001: val_loss improved from inf to 0.17002, saving model to debug.hdf
Traceback (most recent call last):
  File "debug_multitask_inverter.py", line 19, in <module>
    model.fit(np.random.rand(100, 30, 3), [np.random.rand(100, 30, 3)], callbacks=training_callbacks, epochs=50, batch_size=10, validation_split=0.33)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/site-packages/keras/engine/training.py", line 1631, in fit

▽
    validation_steps=validation_steps)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/site-packages/keras/engine/training.py", line 1233, in _fit_loop
    callbacks.on_epoch_end(epoch, epoch_logs)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/site-packages/keras/callbacks.py", line 73, in on_epoch_end
    callback.on_epoch_end(epoch, logs)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/site-packages/keras/callbacks.py", line 414, in on_epoch_end
    self.model.save(filepath, overwrite=True)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/site-packages/keras/engine/topology.py", line 2556, in save
    save_model(self, filepath, overwrite, include_optimizer)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/site-packages/keras/models.py", line 107, in save_model
    'config': model.get_config()
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/site-packages/keras/engine/topology.py", line 2397, in get_config
    return copy.deepcopy(config)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 150, in deepcopy
    y = copier(x, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 240, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 150, in deepcopy
    y = copier(x, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 215, in _deepcopy_list
    append(deepcopy(a, memo))
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 150, in deepcopy
    y = copier(x, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 240, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 150, in deepcopy
    y = copier(x, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 240, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 150, in deepcopy
    y = copier(x, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 240, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 180, in deepcopy
    y = _reconstruct(x, memo, *rv)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 280, in _reconstruct
    state = deepcopy(state, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 150, in deepcopy
    y = copier(x, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 240, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 180, in deepcopy
    y = _reconstruct(x, memo, *rv)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 280, in _reconstruct
    state = deepcopy(state, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 150, in deepcopy
    y = copier(x, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 240, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 180, in deepcopy
    y = _reconstruct(x, memo, *rv)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 280, in _reconstruct
    state = deepcopy(state, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 150, in deepcopy
    y = copier(x, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 240, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)
  File "/om/user/lnj/openmind_env/tensorflow-gpu/lib/python3.6/copy.py", line 169, in deepcopy
    rv = reductor(4)
TypeError: can't pickle _thread.lock objects
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

When saving a Lambda layer, the arguments passed in will also be saved. In this case, it contains two tf.Tensors. It seems that Keras does not support serializing tf.Tensor in the model config right now.

However, numpy arrays can be serialized without problem. So instead of passing tf.Tensor in arguments, you can pass in numpy arrays, and convert them into tf.Tensors in the lambda function.

x = Input(shape=(30,3))
low = np.random.rand(30, 3)
high = 1 + np.random.rand(30, 3)
clipped_out_position = Lambda(lambda x, low, high: tf.clip_by_value(x, tf.constant(low, dtype='float32'), tf.constant(high, dtype='float32')),
                              arguments={'low': low, 'high': high})(x)

A problem with the lines above is that, when trying to load this model, you might see a NameError: name 'tf' is not defined. That's because TensorFlow is not imported in the file where the Lambda layer is reconstructed (core.py).

Changing tf into K.tf can fix the problem. Also you can replace tf.constant() by K.constant(), which casts low and high into float32 tensors automatically.

from keras import backend as K
x = Input(shape=(30,3))
low = np.random.rand(30, 3)
high = 1 + np.random.rand(30, 3)
clipped_out_position = Lambda(lambda x, low, high: K.tf.clip_by_value(x, K.constant(low), K.constant(high)),
                              arguments={'low': low, 'high': high})(x)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...