The partykit
package has a function .list.rules.party()
which is currently unexported but can be leveraged to do what you want to do. The main reason that we haven't exported it, yet, is that its type of output may change in future versions.
To obtain the predictions you describe above you can do:
pathpred <- function(object, ...)
{
## coerce to "party" object if necessary
if(!inherits(object, "party")) object <- as.party(object)
## get standard predictions (response/prob) and collect in data frame
rval <- data.frame(response = predict(object, type = "response", ...))
rval$prob <- predict(object, type = "prob", ...)
## get rules for each node
rls <- partykit:::.list.rules.party(object)
## get predicted node and select corresponding rule
rval$rule <- rls[as.character(predict(object, type = "node", ...))]
return(rval)
}
Illustration using the iris
data and rpart()
:
library("rpart")
library("partykit")
rp <- rpart(Species ~ ., data = iris)
rp_pred <- pathpred(rp)
rp_pred[c(1, 51, 101), ]
## response prob.setosa prob.versicolor prob.virginica
## 1 setosa 1.00000000 0.00000000 0.00000000
## 51 versicolor 0.00000000 0.90740741 0.09259259
## 101 virginica 0.00000000 0.02173913 0.97826087
## rule
## 1 Petal.Length < 2.45
## 51 Petal.Length >= 2.45 & Petal.Width < 1.75
## 101 Petal.Length >= 2.45 & Petal.Width >= 1.75
(Only the first observation of each species is shown for brevity here. This corresponds to indexes 1, 51, and 101.)
And with ctree()
:
ct <- ctree(Species ~ ., data = iris)
ct_pred <- pathpred(ct)
ct_pred[c(1, 51, 101), ]
## response prob.setosa prob.versicolor prob.virginica
## 1 setosa 1.00000000 0.00000000 0.00000000
## 51 versicolor 0.00000000 0.97826087 0.02173913
## 101 virginica 0.00000000 0.02173913 0.97826087
## rule
## 1 Petal.Length <= 1.9
## 51 Petal.Length > 1.9 & Petal.Width <= 1.7 & Petal.Length <= 4.8
## 101 Petal.Length > 1.9 & Petal.Width > 1.7
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…