Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
457 views
in Technique[技术] by (71.8m points)

c++ - Why do lambda functions drop deduced return type reference by default?

In C++14, why do lambda functions with a deduced return type drop references from the return type by default? IIUC, since C++14 lambda functions with a deduced return type (without an explicit trailing return type) have a return type of auto, which drops references (among other things).

Why was this decision made? It seems to me like a gotcha to remove a reference when that's what your return statement returns.

This behavior caused the following nasty bug for me:

class Int {
public:
   Int(int i) : m_int{i} {}
   int m_int;
};

class C {
public:
    C(Int obj) : m_obj{obj} {}
    const auto& getObj() { return m_obj; }
    Int m_obj;
};

class D {
public:
    D(std::function<const Int&()> f) : m_f{f} {}
    std::function<const Int&()> m_f;
};

Int myint{5};
C c{myint};
D d{ [&c](){ return c.getObj(); } } // The deduced return type of the lambda is Int (with no reference)
const Int& myref = d.m_f(); // Instead of referencing myint, myref is a dangling reference; d.m_f() returned a copy of myint, which is subsequently destroyed.

Specifying the desired return type when initializing d resolves the issue:

D d{ [&c]() -> const Int& { return c.getObj(); } }

Interestingly, even if the auto return type deduction makes sense, isn't it a bug that std::function<const Int&> gets happily initialized with a function that returns a non-reference? I see this also by writing explicitly:

D d{ [&c]() -> Int { return c.getObj(); } }

which compiles without a problem. (on Xcode 8, clang 8.0.0)

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I think the place you are stumbling is actually with the expression c.getObj() in the line return c.getObj();.

You think the expression c.getObj() has type const Int&. However that is not true; expressions never have reference type. As noted by Kerrek SB in comments, we sometimes talk about expressions as if they had reference type, as a shortcut to save on verbosity, but that leads to misconceptions so I think it is important to understand what is really going on.

The use of a reference type in a declaration (including as a return type as in getObj's declaration) affects how the thing being declared is initialized, but once it is initialized, there is no longer any evidence that it was originally a reference.

Here is a simpler example:

int a; int &b = a;  // 1

versus

int b; int &a = b;  // 2

These two codes are exactly identical (except for the result of decltype(a) or decltype(b) which is a bit of a hack to the system). In both cases the expressions a and b both have type int and value category "lvalue" and denote the same object. It's not the case that a is the "real object" and b is some sort of disguised pointer to a. They are both on equal footing. It's one object with two names.

Going back to your code now: the expression c.getObj() has exactly the same behaviour as c.m_obj, apart from access rights. The type is Int and the value category is "lvalue". The & in the return type of getObj() only dictates that this is an lvalue and it will also designate an object that already existed (approximately speaking).

So the deduced return type from return c.getObj(); is the same as it would be for return c.m_obj; , which -- to be compatible with template type deduction, as mentioned elsewhere -- is not a reference type.

NB. If you understood this post you will also understand why I don't like the pedagogy of "references" being taught as "disguised pointers that auto dereference", which is somewhere between wrong and dangerous.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...