Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
354 views
in Technique[技术] by (71.8m points)

functional programming - Could I ask for physical analogies or metaphors for recursion?

I am suddenly in a recursive language class (sml) and recursion is not yet physically sensible for me. I'm thinking about the way a floor of square tiles is sometimes a model or metaphor for integer multiplication, or Cuisenaire Rods are a model or analogue for addition and subtraction. Does anyone have any such models you could share?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Imagine you're a real life magician, and can make a copy of yourself. You create your double a step closer to the goal and give him (or her) the same orders as you were given.

Your double does the same to his copy. He's a magician too, you see.

When the final copy finds itself created at the goal, it has nowhere more to go, so it reports back to its creator. Which does the same.

Eventually, you get your answer back – without having moved an inch – and can now create the final result from it, easily. You get to pretend not knowing about all those doubles doing the actual hard work for you. "Hmm," you're saying to yourself, "what if I were one step closer to the goal and already knew the result? Wouldn't it be easy to find the final answer then ?" *

Of course, if you were a double, you'd have to report your findings to your creator.

More here.

(also, I think I saw this "doubles" creation chain event here, though I'm not entirely sure).


* and that is the essence of the recursion method of problem solving.

How do I know my procedure is right? If my simple little combination step produces a valid solution, under assumption it produced the correct solution for the smaller case, all I need is to make sure it works for the smallest case – the base case – and then by induction the validity is proven!

Another possibility is divide-and-conquer, where we split our problem in two halves, so will get to the base case much much faster. As long as the combination step is simple (and preserves validity of solution of course), it works. In our magician metaphor, I get to create two copies of myself, and combine their two answers into one when they are finished. Each of them creates two copies of themselves as well, so this creates a branching tree of magicians, instead of a simple line as before.


A good example is the Sierpinski triangle which is a figure that is built from three quarter-sized Sierpinski triangles simply, by stacking them up at their corners.

Each of the three component triangles is built according to the same recipe.

Although it doesn't have the base case, and so the recursion is unbounded (bottomless; infinite), any finite representation of S.T. will presumably draw just a dot in place of the S.T. which is too small (serving as the base case, stopping the recursion).

There's a nice picture of it in the linked Wikipedia article.

Recursively drawing an S.T. without the size limit will never draw anything on screen! For mathematicians recursion may be great, engineers though should be more cautious about it. :)

Switching to corecursion ⁄ iteration (see the linked answer for that), we would first draw the outlines, and the interiors after that; so even without the size limit the picture would appear pretty quickly. The program would then be busy without any noticeable effect, but that's better than the empty screen.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...