series
RowX yes
RowY no
RowW yes
RowJ no
RowA yes
RowR no
RowX yes
RowY yes
RowW yes
RowJ yes
RowA yes
RowR no
Name: Column 3, dtype: object
pd.factorize
1 - series.factorize()[0]
array([1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0])
np.where
np.where(series == 'yes', 1, 0)
array([1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0])
pd.Categorical
/astype('category')
pd.Categorical(series).codes
array([1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0], dtype=int8)
series.astype('category').cat.codes
RowX 1
RowY 0
RowW 1
RowJ 0
RowA 1
RowR 0
RowX 1
RowY 1
RowW 1
RowJ 1
RowA 1
RowR 0
dtype: int8
pd.Series.replace
series.replace({'yes' : 1, 'no' : 0})
RowX 1
RowY 0
RowW 1
RowJ 0
RowA 1
RowR 0
RowX 1
RowY 1
RowW 1
RowJ 1
RowA 1
RowR 0
Name: Column 3, dtype: int64
A fun, generalised version of the above:
series.replace({r'^(?!yes).*$' : 0}, regex=True).astype(bool).astype(int)
RowX 1
RowY 0
RowW 1
RowJ 0
RowA 1
RowR 0
RowX 1
RowY 1
RowW 1
RowJ 1
RowA 1
RowR 0
Name: Column 3, dtype: int64
Anything that is not "yes"
is 0
.