Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
293 views
in Technique[技术] by (71.8m points)

python - Factorize a column of strings in pandas

As the question says, I have a data frame df_original which is quite large but looks like:

        ID    Count   Column 2   Column 3  Column 4
RowX    1      234.     255.       yes.      452
RowY    1      123.     135.       no.       342
RowW    1      234.     235.       yes.      645
RowJ    1      123.     115.       no.       342
RowA    1      234.     285.       yes.      233
RowR    1      123.     165.       no.       342
RowX    2      234.     255.       yes.      234
RowY    2      123.     135.       yes.      342
RowW    2      234.     235.       yes.      233
RowJ    2      123.     115.       yes.      342
RowA    2      234.     285.       yes.      312
RowR    2      123.     165.       no.       342
.
.
.
RowX    1233   234.     255.       yes.      133
RowY    1233   123.     135.       no.       342
RowW    1233   234.     235.       no.       253
RowJ    1233   123.     115.       yes.      342
RowA    1233   234.     285.       yes.      645
RowR    1233   123.     165.       no.       342

I am trying to get rid of the text data and replace it with a predefined numerical equivalent. For example, in this case, I'd like to replace Column3's yes or no values with 1 or 0 respectively. Is there a way to do this without me having to manually go in and alter the values?


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)
series

RowX    yes
RowY     no
RowW    yes
RowJ     no
RowA    yes
RowR     no
RowX    yes
RowY    yes
RowW    yes
RowJ    yes
RowA    yes
RowR     no
Name: Column 3, dtype: object

pd.factorize

1 - series.factorize()[0]
array([1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0])
    

np.where

np.where(series == 'yes', 1, 0)
array([1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0])

pd.Categorical/astype('category')

pd.Categorical(series).codes
array([1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0], dtype=int8)
series.astype('category').cat.codes

RowX    1
RowY    0
RowW    1
RowJ    0
RowA    1
RowR    0
RowX    1
RowY    1
RowW    1
RowJ    1
RowA    1
RowR    0
dtype: int8

pd.Series.replace

series.replace({'yes' : 1, 'no' : 0})
 
RowX    1
RowY    0
RowW    1
RowJ    0
RowA    1
RowR    0
RowX    1
RowY    1
RowW    1
RowJ    1
RowA    1
RowR    0
Name: Column 3, dtype: int64

A fun, generalised version of the above:

series.replace({r'^(?!yes).*$' : 0}, regex=True).astype(bool).astype(int)

RowX    1
RowY    0
RowW    1
RowJ    0
RowA    1
RowR    0
RowX    1
RowY    1
RowW    1
RowJ    1
RowA    1
RowR    0
Name: Column 3, dtype: int64

Anything that is not "yes" is 0.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...