Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
652 views
in Technique[技术] by (71.8m points)

algorithm - Calculate bounding polygon of alpha shape from the Delaunay triangulation

Given a set of points in the plane, a notion of alpha-shape, for a given positive number alpha, is defined by finding the Delaunay triangulation and deleting any triangles for which at least one edge exceeds alpha in length. Here's an example using d3:

http://bl.ocks.org/gka/1552725

The problem is that, when there are thousands of points, simply drawing all the interior triangles is too slow for an interactive visualization, so I'd like to just find the bounding polygons. This isn't so simple, because as you can see from that example sometimes there might be two such polygons.

As a simplification, suppose some clustering has been performed so that there's guaranteed to be a unique bounding polygon for each triangulation. What's the best way to find this bounding polygon? In particular, the edges have to be ordered consistently and it must support the possibility of "holes" (think a torus or donut shape--this is expressible in GeoJSON).

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Here is some Python code that does what you need. I modified the alpha-shape (concave hull) computation from here so that it doesn't insert inner edges (the only_outer parameter). I also made it self-contained so it doesn't depend on an outside library.

from scipy.spatial import Delaunay
import numpy as np


def alpha_shape(points, alpha, only_outer=True):
    """
    Compute the alpha shape (concave hull) of a set of points.
    :param points: np.array of shape (n,2) points.
    :param alpha: alpha value.
    :param only_outer: boolean value to specify if we keep only the outer border
    or also inner edges.
    :return: set of (i,j) pairs representing edges of the alpha-shape. (i,j) are
    the indices in the points array.
    """
    assert points.shape[0] > 3, "Need at least four points"

    def add_edge(edges, i, j):
        """
        Add a line between the i-th and j-th points,
        if not in the list already
        """
        if (i, j) in edges or (j, i) in edges:
            # already added
            assert (j, i) in edges, "Can't go twice over same directed edge right?"
            if only_outer:
                # if both neighboring triangles are in shape, it is not a boundary edge
                edges.remove((j, i))
            return
        edges.add((i, j))

    tri = Delaunay(points)
    edges = set()
    # Loop over triangles:
    # ia, ib, ic = indices of corner points of the triangle
    for ia, ib, ic in tri.simplices:
        pa = points[ia]
        pb = points[ib]
        pc = points[ic]
        # Computing radius of triangle circumcircle
        # www.mathalino.com/reviewer/derivation-of-formulas/derivation-of-formula-for-radius-of-circumcircle
        a = np.sqrt((pa[0] - pb[0]) ** 2 + (pa[1] - pb[1]) ** 2)
        b = np.sqrt((pb[0] - pc[0]) ** 2 + (pb[1] - pc[1]) ** 2)
        c = np.sqrt((pc[0] - pa[0]) ** 2 + (pc[1] - pa[1]) ** 2)
        s = (a + b + c) / 2.0
        area = np.sqrt(s * (s - a) * (s - b) * (s - c))
        circum_r = a * b * c / (4.0 * area)
        if circum_r < alpha:
            add_edge(edges, ia, ib)
            add_edge(edges, ib, ic)
            add_edge(edges, ic, ia)
    return edges

If you run it with the following test code you will get this figure:

from matplotlib.pyplot import *

# Constructing the input point data
np.random.seed(0)
x = 3.0 * np.random.rand(2000)
y = 2.0 * np.random.rand(2000) - 1.0
inside = ((x ** 2 + y ** 2 > 1.0) & ((x - 3) ** 2 + y ** 2 > 1.0) & ((x - 1.5) ** 2 + y ** 2 > 0.09))
points = np.vstack([x[inside], y[inside]]).T

# Computing the alpha shape
edges = alpha_shape(points, alpha=0.25, only_outer=True)

# Plotting the output
figure()
axis('equal')
plot(points[:, 0], points[:, 1], '.')
for i, j in edges:
    plot(points[[i, j], 0], points[[i, j], 1])
show()

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...