Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
657 views
in Technique[技术] by (71.8m points)

nlp - How to extract common / significant phrases from a series of text entries

I have a series of text items- raw HTML from a MySQL database. I want to find the most common phrases in these entries (not the single most common phrase, and ideally, not enforcing word-for-word matching).

My example is any review on Yelp.com, that shows 3 snippets from hundreds of reviews of a given restaurant, in the format:

"Try the hamburger" (in 44 reviews)

e.g., the "Review Highlights" section of this page:

http://www.yelp.com/biz/sushi-gen-los-angeles/

I have NLTK installed and I've played around with it a bit, but am honestly overwhelmed by the options. This seems like a rather common problem and I haven't been able to find a straightforward solution by searching here.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I suspect you don't just want the most common phrases, but rather you want the most interesting collocations. Otherwise, you could end up with an overrepresentation of phrases made up of common words and fewer interesting and informative phrases.

To do this, you'll essentially want to extract n-grams from your data and then find the ones that have the highest point wise mutual information (PMI). That is, you want to find the words that co-occur together much more than you would expect them to by chance.

The NLTK collocations how-to covers how to do this in a about 7 lines of code, e.g.:

import nltk
from nltk.collocations import *
bigram_measures = nltk.collocations.BigramAssocMeasures()
trigram_measures = nltk.collocations.TrigramAssocMeasures()

# change this to read in your data
finder = BigramCollocationFinder.from_words(
    nltk.corpus.genesis.words('english-web.txt'))

# only bigrams that appear 3+ times
finder.apply_freq_filter(3)

# return the 10 n-grams with the highest PMI
finder.nbest(bigram_measures.pmi, 10)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...