Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
791 views
in Technique[技术] by (71.8m points)

deep learning - How does keras handle multiple losses?

If I have something like:

model = Model(inputs = input, outputs = [y1,y2])

l1 = 0.5
l2 = 0.3
model.compile(loss = [loss1,loss2], loss_weights = [l1,l2], ...)

what does Keras do with the losses to obtain the final loss? Is it something like:

final_loss = l1*loss1 + l2*loss2

Also, what does it mean during training? Is the loss2 only used to update the weights on layers where y2 comes from? Or is it used for all the model's layers?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

From model documentation:

loss: String (name of objective function) or objective function. See losses. If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses.

...

loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the weighted sum of all individual losses, weighted by the loss_weights coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a tensor, it is expected to map output names (strings) to scalar coefficients.

So, yes, the final loss will be the "weighted sum of all individual losses, weighted by the loss_weights coeffiecients".

You can check the code where the loss is calculated.

Also, what does it mean during training? Is the loss2 only used to update the weights on layers where y2 comes from? Or is it used for all the model's layers?

The weights are updated through backpropagation, so each loss will affect only layers that connect the input to the loss.

For example:

                        +----+         
                        > C  |-->loss1 
                       /+----+         
                      /                
                     /                 
    +----+    +----+/                  
 -->| A  |--->| B  |                  
    +----+    +----+                  
                                      
                       +----+         
                        > D  |-->loss2 
                        +----+         
  • loss1 will affect A, B, and C.
  • loss2 will affect A, B, and D.

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...