Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
420 views
in Technique[技术] by (71.8m points)

c - Efficiency of CUDA vector types (float2, float3, float4)

I'm trying to understand the integrate_functor in particles_kernel.cu from CUDA examples:

struct integrate_functor
{
    float deltaTime;    
    //constructor for functor
    //...

    template <typename Tuple>
    __device__
    void operator()(Tuple t)
    {
        volatile float4 posData = thrust::get<2>(t);
        volatile float4 velData = thrust::get<3>(t);

        float3 pos = make_float3(posData.x, posData.y, posData.z);
        float3 vel = make_float3(velData.x, velData.y, velData.z);

        // update position and velocity
        // ...

        // store new position and velocity
        thrust::get<0>(t) = make_float4(pos, posData.w);
        thrust::get<1>(t) = make_float4(vel, velData.w);
    }
};

We call make_float4(pos, age) but make_float4 is defined in vector_functions.h as

static __inline__ __host__ __device__ float4 make_float4(float x, float y, float z, float w)
{
    float4 t; t.x = x; t.y = y; t.z = z; t.w = w; return t;
} 

Are CUDA vector types (float3 and float4) more efficient for the GPU and how does the compiler know how to overload the function make_float4?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I'm expanding njuffa's comment into a worked example. In that example, I'm simply adding two arrays in three different ways: loading the data as float, float2 or float4.

These are the timings on a GT540M and on a Kepler K20c card:

GT540M
float  - Elapsed time:  74.1 ms
float2 - Elapsed time:  61.0 ms
float4 - Elapsed time:  56.1 ms

Kepler K20c
float  - Elapsed time:  4.4 ms 
float2 - Elapsed time:  3.3 ms 
float4 - Elapsed time:  3.2 ms

As it can be seen, loading the data as float4 is the fastest approach.

Below are the disassembled codes for the three kernels (compilation for compute capability 2.1).

add_float

        Function : _Z9add_floatPfS_S_j
.headerflags    @"EF_CUDA_SM21 EF_CUDA_PTX_SM(EF_CUDA_SM21)"
/*0000*/         MOV R1, c[0x1][0x100];                          /* 0x2800440400005de4 */
/*0008*/         S2R R2, SR_TID.X;                               /* 0x2c00000084009c04 */
/*0010*/         SHL R2, R2, 0x2;                                /* 0x6000c00008209c03 */
/*0018*/         S2R R0, SR_CTAID.X;                             /* 0x2c00000094001c04 */
/*0020*/         SHL R0, R0, 0x2;                                /* 0x6000c00008001c03 */
/*0028*/         IMAD R0, R0, c[0x0][0x8], R2;                   /* 0x2004400020001ca3 */
/*0030*/         ISETP.GE.U32.AND P0, PT, R0, c[0x0][0x2c], PT;  /* 0x1b0e4000b001dc03 */
/*0038*/     @P0 BRA.U 0xd8;                                     /* 0x40000002600081e7 */
/*0040*/    @!P0 ISCADD R2, R0, c[0x0][0x24], 0x2;               /* 0x400040009000a043 */
/*0048*/    @!P0 ISCADD R10, R0, c[0x0][0x20], 0x2;              /* 0x400040008002a043 */
/*0050*/    @!P0 ISCADD R0, R0, c[0x0][0x28], 0x2;               /* 0x40004000a0002043 */
/*0058*/    @!P0 LD R8, [R2];                                    /* 0x8000000000222085 */
/*0060*/    @!P0 LD R6, [R2+0x4];                                /* 0x800000001021a085 */
/*0068*/    @!P0 LD R4, [R2+0x8];                                /* 0x8000000020212085 */
/*0070*/    @!P0 LD R9, [R10];                                   /* 0x8000000000a26085 */
/*0078*/    @!P0 LD R7, [R10+0x4];                               /* 0x8000000010a1e085 */
/*0080*/    @!P0 LD R5, [R10+0x8];                               /* 0x8000000020a16085 */
/*0088*/    @!P0 LD R3, [R10+0xc];                               /* 0x8000000030a0e085 */
/*0090*/    @!P0 LD R2, [R2+0xc];                                /* 0x800000003020a085 */
/*0098*/    @!P0 FADD R8, R9, R8;                                /* 0x5000000020922000 */
/*00a0*/    @!P0 FADD R6, R7, R6;                                /* 0x500000001871a000 */
/*00a8*/    @!P0 FADD R4, R5, R4;                                /* 0x5000000010512000 */
/*00b0*/    @!P0 ST [R0], R8;                                    /* 0x9000000000022085 */
/*00b8*/    @!P0 FADD R2, R3, R2;                                /* 0x500000000830a000 */
/*00c0*/    @!P0 ST [R0+0x4], R6;                                /* 0x900000001001a085 */
/*00c8*/    @!P0 ST [R0+0x8], R4;                                /* 0x9000000020012085 */
/*00d0*/    @!P0 ST [R0+0xc], R2;                                /* 0x900000003000a085 */
/*00d8*/         EXIT;                                           /* 0x8000000000001de7 */

add_float2

        Function : _Z10add_float2P6float2S0_S0_j
.headerflags    @"EF_CUDA_SM21 EF_CUDA_PTX_SM(EF_CUDA_SM21)"
/*0000*/         MOV R1, c[0x1][0x100];                          /* 0x2800440400005de4 */
/*0008*/         S2R R2, SR_TID.X;                               /* 0x2c00000084009c04 */
/*0010*/         SHL R2, R2, 0x1;                                /* 0x6000c00004209c03 */
/*0018*/         S2R R0, SR_CTAID.X;                             /* 0x2c00000094001c04 */
/*0020*/         SHL R0, R0, 0x1;                                /* 0x6000c00004001c03 */
/*0028*/         IMAD R0, R0, c[0x0][0x8], R2;                   /* 0x2004400020001ca3 */
/*0030*/         ISETP.GE.U32.AND P0, PT, R0, c[0x0][0x2c], PT;  /* 0x1b0e4000b001dc03 */
/*0038*/     @P0 BRA.U 0xa8;                                     /* 0x40000001a00081e7 */
/*0040*/    @!P0 ISCADD R10, R0, c[0x0][0x20], 0x3;              /* 0x400040008002a063 */
/*0048*/    @!P0 ISCADD R11, R0, c[0x0][0x24], 0x3;              /* 0x400040009002e063 */
/*0050*/    @!P0 ISCADD R0, R0, c[0x0][0x28], 0x3;               /* 0x40004000a0002063 */
/*0058*/    @!P0 LD.64 R4, [R10];                                /* 0x8000000000a120a5 */
/*0060*/    @!P0 LD.64 R8, [R11];                                /* 0x8000000000b220a5 */
/*0068*/    @!P0 LD.64 R2, [R10+0x8];                            /* 0x8000000020a0a0a5 */
/*0070*/    @!P0 LD.64 R6, [R11+0x8];                            /* 0x8000000020b1a0a5 */
/*0078*/    @!P0 FADD R9, R5, R9;                                /* 0x5000000024526000 */
/*0080*/    @!P0 FADD R8, R4, R8;                                /* 0x5000000020422000 */
/*0088*/    @!P0 FADD R3, R3, R7;                                /* 0x500000001c30e000 */
/*0090*/    @!P0 FADD R2, R2, R6;                                /* 0x500000001820a000 */
/*0098*/    @!P0 ST.64 [R0], R8;                                 /* 0x90000000000220a5 */
/*00a0*/    @!P0 ST.64 [R0+0x8], R2;                             /* 0x900000002000a0a5 */
/*00a8*/         EXIT;                                           /* 0x8000000000001de7 */

add_float4

        Function : _Z10add_float4P6float4S0_S0_j
.headerflags    @"EF_CUDA_SM21 EF_CUDA_PTX_SM(EF_CUDA_SM21)"
/*0000*/         MOV R1, c[0x1][0x100];                  /* 0x2800440400005de4 */
/*0008*/         NOP;                                    /* 0x4000000000001de4 */
/*0010*/         MOV R3, c[0x0][0x2c];                   /* 0x28004000b000dde4 */
/*0018*/         S2R R0, SR_CTAID.X;                     /* 0x2c00000094001c04 */
/*0020*/         SHR.U32 R3, R3, 0x2;                    /* 0x5800c0000830dc03 */
/*0028*/         S2R R2, SR_TID.X;                       /* 0x2c00000084009c04 */
/*0030*/         IMAD R0, R0, c[0x0][0x8], R2;           /* 0x2004400020001ca3 */
/*0038*/         ISETP.GE.U32.AND P0, PT, R0, R3, PT;    /* 0x1b0e00000c01dc03 */
/*0040*/     @P0 BRA.U 0x98;                             /* 0x40000001400081e7 */
/*0048*/    @!P0 ISCADD R2, R0, c[0x0][0x20], 0x4;       /* 0x400040008000a083 */
/*0050*/    @!P0 ISCADD R3, R0, c[0x0][0x24], 0x4;       /* 0x400040009000e083 */
/*0058*/    @!P0 ISCADD R0, R0, c[0x0][0x28], 0x4;       /* 0x40004000a0002083 */
/*0060*/    @!P0 LD.128 R8, [R2];                        /* 0x80000000002220c5 */
/*0068*/    @!P0 LD.128 R4, [R3];                        /* 0x80000000003120c5 */
/*0070*/    @!P0 FADD R7, R11, R7;                       /* 0x500000001cb1e000 */
/*0078*/    @!P0 FADD R6, R10, R6;                       /* 0x5000000018a1a000 */
/*0080*/    @!P0 FADD R5, R9, R5;                        /* 0x5000000014916000 */
/*0088*/    @!P0 FADD R4, R8, R4;                        /* 0x5000000010812000 */
/*0090*/    @!P0 ST.128 [R0], R4;                        /* 0x90000000000120c5 */
/*0098*/         EXIT;                                   /* 0x8000000000001de7 */

As it can be seen and as mentioned by njuffa, different load instructions are used for the three cases: LD, LD.64 and LD.128, respectively.

Finally, the code:

#include <thrust/device_vector.h>

#define BLOCKSIZE 256

/*******************/
/* iDivUp FUNCTION */
/*******************/
int iDivUp(int a, int b){ return ((a % b) != 0) ? (a / b + 1) : (a / b); }

/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
   if (code != cudaSuccess) 
   {
      fprintf(stderr,"GPUassert: %s %s %d
", cudaGetErrorString(code), file, line);
      if (abort) exit(code);
   }
}

/********************/
/* ADD_FLOAT KERNEL */
/********************/
__global__ void add_float(float *d_a, float *d_b, float *d_c, unsigned int N) {

    const int tid = 4 * threadIdx.x + blockIdx.x * (4 * blockDim.x);

    if (tid < N) {

        float a1 = d_a[tid];
        float b1 = d_b[tid];

        float a2 = d_a[tid+1];
        float b2 = d_b[tid+1];

        float a3 = d_a[tid+2];
        float b3 = d_b[tid+2];

        float a4 = d_a[tid+3];
        float b4 = d_b[tid+3];

        float c1 = a1 + b1;
        float c2 = a2 + b2;
        float c3 = a3 + b3;
        float c4 = a4 + b4;

        d_c[tid] = c1;
        d_c[tid+1] = c2;
        d_c[tid+2] = c3;
        d_c[tid+3] = c4;

        //if ((tid < 1800) && (tid > 1790)) {
            //printf("%i %i %i %f %f %f
", tid, threadIdx.x, blockIdx.x, a1, b1, c1);
            //printf("%i %i %i %f %f %f
", tid+1, threadIdx.x, blockIdx.x, a2, b2, c2);
            //printf("%i %i %i %f %f %f
", tid+2, threadIdx.x, blockIdx.x, a3, b3, c3);
            //printf("%i %i %i %f %f %f
", tid+3, threadIdx.x, blockIdx.x, a4, b4, c4);
        //}

    }

}

/*********************/
/* ADD_FLOAT2 KERNEL */
/*********************/
__global__ void add_float2(float2 *d_a, float2 *d_b, float2 *d_c, unsigned int N) {

    const int tid = 2 * threadIdx.x + blockIdx.x * (2 * blockDim.x);

    if (tid < N) {

        float2 a1 = d_a[tid];
        float2 b1 = d_b[tid];

        float2 a2 = d_a[tid+1];
        float2 b2 = d_b[tid+1];

        float2 c1;
        c1.x = a1.x + b1.x;
        c1.y = a1.y + b1.y;

        float2 c2;
        c2.x = a2.x + b2.x;
        c2.y = a2.y + b2.y;

        d_c[tid] = c1;
        d_c[tid+1] = c2;

    }

}

/*********************/
/* ADD_FLOAT4 KERNEL */
/*********************/
__global__ void add_float4(float4 *d_a, float4 *d_b, float4 *d_c, unsigned int N) {

    const int tid = 1 * threadIdx.x + blockIdx.x * (1 * blockDim.x);

    if (tid < N/4) {

        float4 a1 = d_a[tid];
        float4 b1 = d_b[tid];

        float4 c1;
        c1.x = a1.x + b1.x;
        c1.y = a1.y + b1.y;
        c1.z = a1.z + b1.z;
        c1.w = a1.w + b1.w;

        d_c[tid] = c1;

    }

}

/********/
/* MAIN */
/********/
int main() {

    const int N = 4*10000000;

    const float a = 3.f;
    const float b = 5.f;

    // --- float

    thrust::device_vector<float> d_A(N, a);
    thrust::device_vector<float> d_B(N, b);
    thrust::device_vector<float> d_C(N);

    float time;
    cudaEvent_t start, stop;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    cudaEventRecord(start, 0);
    add_float<<<iDivUp(N/4, BLOCKSIZE), BLOCKSIZE>>>(thrust::raw_pointer_cast(d_A.data()), thrust::raw_pointer_cast(d_B.data()), thrust::raw_pointer_cast(d_C.data()), N);
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&time, start, stop);
    printf("Elapsed time:  %3.1f ms 
", time); gpuErrchk(cudaPeekAtLastError());
    gpuErrchk(cudaPeekAtLastError());
    gpuErrchk(cudaDeviceSynchronize());

    thrust::host_vector<float> h_float = d_C;
    for (int i=0; i<N; i++) {
        if (h_float[i] != (a+b)) {
            printf("Error for add_float at %i: result is %f
",i, h_float[i]);
            return -1;
        }
    }

    // --- float2

    thrust::device_vector<float> d_A2(N, a);
    thrust::device_vector<float> d_B2(N, b);
    thrust::device_vector<float> d_C2(N);

    cudaEventCreate(&stop);
 

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...